High-Performance Storage Systems
I/O Systems
Storage Technology Drivers

Driven by the prevailing computing paradigm
- 1950s: migration from batch to on-line processing
- 1990s: migration to ubiquitous computing
 - computers in phones, books, cars, video cameras, ...
 - nationwide fiber optical network with wireless tails
- Today: digital media everywhere
 - Digital forms of voice, picture, and video
 - Data from scientific computing such as earthquake simulation, high energy physical experiments, bioinformatics
 - In forms of personal storages, web server, peer-to-peer storage, grid storage

Effects on storage industry:
- Embedded storage
 - smaller, cheaper, more reliable, lower power
- Data utilities
 - high capacity, hierarchically managed storage
Magnetic Disks

Purpose:
- Long-term, nonvolatile storage
- Large, inexpensive, slow level in the storage hierarchy

Characteristics:
- **Seek Time (~8 ms avg)**
 - positional latency
 - rotational latency
- **Transfer rate**
 - 10-40 MByte/sec
 - Blocks
- **Capacity**
 - Gigabytes
 - Quadruples every 2 years

7200 RPM = 120 RPS => 8 ms per rev
ave rot. latency = 4 ms
128 sectors per track => 0.25 ms per sector
1 KB per sector => 16 MB / s

Response time = Queue + Controller + Seek + Rot + Xfer
Service time
Photo of Disk Head, Arm, Actuator

Actuator

Arm

Head

Spindle

\{\text{Platters} (12)\}
Seagate Barracuda 180

- 181.6 GB, 3.5 inch disk
- 12 platters, 24 surfaces
- 24,247 cylinders
- 7,200 RPM; (4.2 ms avg. latency)
- 7.4/8.2 ms avg. seek (r/w)
- 64 to 35 MB/s (internal)
- 0.1 ms controller time
- 10.3 watts (idle)

source: www.seagate.com

Latency = \[\text{Queuing Time} + \text{Controller time} + \text{Seek Time} + \text{Rotation Time} + \frac{\text{Size}}{\text{Bandwidth}}\] per access

per byte
Disk Performance Factors

Actual disk seek and rotation time depends on the current head position

Seek time: how far is the head to the track?
- Disk industry standard: assume random position of the head, e.g., average 8ms seek time
- In practice: disk accesses have locality

Rotation time: how far is the head to sector?
- Can safely assume 1/2 of rotation time (disk keeps rotating)
- 10000 Revolutions Per Minute ⇒ 166.67 Rev/sec
 1 revolution = 1/ 166.67 sec ⇒ 6.00 ms
 1/2 rotation (revolution) ⇒ 3.00 ms

Data Transfer time: What are the rotation speed, disk density, and sectors per transfer?
- 10000 RPM ⇒ a track of data per 6.00 ms
- Outer tracks are longer and may support higher bandwidth
Disk Performance Example

Rule of Thumb:
- Observed average seek time is typically about 1/4 to 1/3 of quoted seek time (i.e., 3X-4X faster)
- Rule of Thumb: disks deliver about 3/4 of internal media rate (1.3X slower) for data

Calculate time to read 64 KB for UltraStar 72, using 1/3 quoted 7.4ms seek time, 3/4 of 64MB/s internal outer track bandwidth

Disk latency = average seek time + average rotational delay + transfer time + controller overhead
= \(0.33 \times 7.4\, \text{ms}\) + 0.5 * 1/(7200 RPM/(60000ms/M)) + 64 KB / (0.75 * 65 MB/s) + 0.1 ms
= 2.5 ms + 0.5 /(7200 RPM/(60000ms/M)) + 64 KB / (47 KB/ms) + 0.1 ms
= 2.5 + 4.2 + 1.4 + 0.1\, \text{ms} = 8.2\, \text{ms} (64\% \text{ of } 12.7)
Disk Characteristics in 2000

<table>
<thead>
<tr>
<th></th>
<th>Seagate Cheetah ST173404LC Ultra160 SCSI</th>
<th>IBM Travelstar 32GH DJSA - 232 ATA-4</th>
<th>IBM 1GB Microdrive DSCM-11000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disk diameter (inches)</td>
<td>3.5</td>
<td>2.5</td>
<td>1.0</td>
</tr>
<tr>
<td>Formatted data capacity (GB)</td>
<td>73.4</td>
<td>32.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Cylinders</td>
<td>14,100</td>
<td>21,664</td>
<td>7,167</td>
</tr>
<tr>
<td>Disks</td>
<td>12</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Recording Surfaces (Heads)</td>
<td>24</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>Bytes per sector</td>
<td>512 to 4096</td>
<td>512</td>
<td>512</td>
</tr>
<tr>
<td>Avg Sectors per track (512 byte)</td>
<td>~ 424</td>
<td>~ 360</td>
<td>~ 140</td>
</tr>
<tr>
<td>Max. areal density (Gbit/sq.in.)</td>
<td>6.0</td>
<td>14.0</td>
<td>15.2</td>
</tr>
<tr>
<td></td>
<td>$828</td>
<td>$447</td>
<td>$435</td>
</tr>
</tbody>
</table>
Disk Performance/Cost Trends

- **Capacity**
 + 100%/year (2X / 1.0 yrs)

- **Transfer rate (BW)**
 + 40%/year (2X / 2.0 yrs)

- **Rotation + Seek time**
 - 8%/year (1/2 in 10 yrs)

- **MB/$**
 > 100%/year (2X / 1.0 yrs)
 Fewer chips + areal density

- **Seagate 120GB Internal Hard Drive**
 ST3120026A, $150 at staple (list price)

- **Maxtor 120GB 8MB Cache Hard Drive**
 $59.84 after rebate at OfficeDepot
Disk System Performance

System-level Metrics:
- **Response Time**
- **Throughput**

\[\text{Response time} = \text{Queue} + \text{Controller} + \text{service time (✓)} \]
How About Queuing Time?

- Queuing time can be the most significant one in disk response time

- More interested in long term, steady state than in startup => Arrivals = Departures

- **Little’s Law**: Mean number tasks in system = arrival rate x mean response time

- Applies to any system in equilibrium, as long as nothing in black box is creating or destroying tasks
A Little Queuing Theory: Notation

Queuing models assume state of equilibrium: input rate = output rate

Notation:
- \(r \): average number of arriving customers/second
- \(T_{ser} \): average time to service a customer (traditionally \(\mu = 1 / T_{ser} \))
- \(u \): server utilization (0..1): \(u = r \times T_{ser} \) (or \(u = r / \mu \))
- \(T_q \): average time/customer in queue = \(T_{ser} \times u / (1-u) \)
- \(T_{sys} \): average time/customer in system: \(T_{sys} = T_q + T_{ser} \)
- \(L_q \): average length of queue: \(L_q = r \times T_q \)
- \(L_{sys} \): average length of system: \(L_{sys} = r \times T_{sys} \)

Little's Law: \(Length_{server} = rate \times Time_{server} \)
(Mean number customers = arrival rate x mean service time)
A Little Queuing Theory: Example

- Processor sends 50 x 8KB disk I/Os per sec, requests & service exponentially distrib., avg. disk service = 12 ms

- On average, how is the disk utilized?
 - What is the number of requests in the queue?
 - What is the average time a spent in the queue?
 - What is the average response time for a disk request?

- Notation:

 - \(r \): average number of arriving customers/second = 50
 - \(T_{\text{ser}} \): average time to service a customer = 12 ms
 - \(u \): server utilization (0..1): \(u = r \times T_{\text{ser}} = 50/s \times 0.012s = 0.60 \)
 - \(T_q \): average time/customer in queue = \(T_{\text{ser}} \times u / (1-u) \) = 12\(\times 0.60/(1-0.60) \) = 12\(\times 1.5 \) = 18 ms
 - \(T_{sys} \): average time/customer in system: \(T_{sys} = T_q + T_{\text{ser}} \) = 30 ms
 - \(L_q \): average length of queue: \(L_q = r \times T_q \) = 50/s \times 0.018s = 0.9 requests in queue
 - \(L_{sys} \): average # tasks in system: \(L_{sys} = r \times T_{sys} \) = 50/s \times 0.030s = 1.5

Look into textbook when you need to work on I/O
How to build Large Storage: Disk Array

Not practical to build large disks
Array Reliability

• Reliability of N disks = Reliability of 1 Disk ÷ N

 50,000 Hours ÷ 70 disks = 700 hours
 Disk system MTTF: Drops from 6 years to 1 month!
 (MTTF: Mean Time to Failure)

• Arrays (without redundancy) too unreliable to be useful!

Solution: RAID -- Redundant Arrays of Inexpensive Disks
RAID: The Idea

logical record

Striped physical records

P contains sum of other disks per stripe mod 2 ("parity")

If disk fails, subtract P from sum of other disks to find missing information

RAID-3 shown
RAID 4: High I/O Rate Parity

Example:
small read D0 & D5, large write D12-D15

Insides of 5 disks

Increasing Logical Disk Address

Stripe

Disk Columns
RAID 5: High I/O Rate Interleaved Parity

Independent writes possible because of interleaved parity

Example: write to D0, D5 uses disks 0, 1, 3, 4

No disk hot spot!
Future Storage Trends

Disks:
- Extraordinary advance in capacity/drive, $/GB
- Currently 17 Gbit/sq. inch; can continue past 100 Gbit/sq. inch?
- Bandwidth, seek time not keeping up: 3.5 inch form factor makes sense? 2.5 inch form factor in near future? 1.0 inch form factor in long term?

Tapes
- Old technique, no investment in innovation
- Are they already dead?
- What is a tapeless backup system?

Other Storage
- CD/DVD
- Compact Flash, USB key storage, MRAM