
SCUBE: A DoS-Resistant Distributed Search Protocol

Souvik Ray and Zhao Zhang
Department of Electrical and Computer Engineering

Iowa State University
Ames, Iowa 50011, USA

Email:{rsouvik,zzhang}@iastate.edu

Abstract– Many P2P-based storage systems use distributed
indexing service for searching documents. There are two secu-
rity issues when the nodes providing the index service are com-
promised by adversaries. First, the adversaries may delete the
indexes or stop the program of indexing service, making the af-
fected documents disappear in the search infrastructure. Second,
the adversaries may leak the locations of the storage nodes host-
ing certain documents, making those nodes the target of DOS
attacks. We propose a protocol called SCUBE which addresses
these attacks by using secret-sharing based threshold cryptogra-
phy and the concept of virtual addresses. Our results show that
SCUBE performs appreciably well under different attack sce-
narios and incurs nominal overhead. A working prototype of
SCUBE has also been implemented and tested on the Planetlab
testbed.

1 Introduction
Over the past few years, peer-to-peer (P2P) applications have

become very popular with the most widespread application being
file sharing. P2P based distributed storage systems use indexes
to improve search performance [15, 10, 25]. While indexes im-
prove search performance, they maymake the distributed storage
system more vulnerable to DoS attacks [22, 13]. This is because
in a highly dynamic and open P2P system, search indexes may
be stored at untrusted nodes which can be compromised by the
adversary. Moreover, the location of these index nodes cannot
be hidden from the adversary. Index-based search systems are
therefore vulnerable to the following types of attacks:

1. File-server attacks: An index server node can be compro-
mised by a malicious adversary and the adversary can then target
specific file-servers because it knows the mapping between a file
and it’s location. This is also called Targeted File Attacks [22].

2. Search-infrastructure attacks: In such an attack, the ma-
licious adversary tampers or destroys the indexes stored at
the compromised node thereby decreasing the reliability of the
search scheme.
File-server attacks may be partially prevented using an access-

control mechanismwhere the indexes are encrypted using a cryp-
tographic key and the key is shared with legal users. However,
encryption alone cannot prevent Search-infrastructure attacks.

The reason is that in distributed index-based search systems (for
example in DHT based systems [24, 17]), there is a direct map-
ping between an index and its location (a distributed hash ta-
ble allows a group of distributed hosts to collectively manage a
mapping between keys and values through the use of distributed
hashing). Therefore, the location of index nodes cannot be hid-
den from the adversary. Again cryptography can be used to en-
force access control such that only legal users can generate the
location of the indexes. This however does not ensure the avail-
ability of indexes in the face of random attacks by the adversary.
Traditional approaches like replication can enhance availability.
However the problemwith replication in a security context is that
even if a single replica is broken, confidentiality can be compro-
mised.
We propose a Secret Sharing based Search scheme which we

call SCUBE. SCUBE uses Shamir’s secret-sharing to split the
location of a file (secret) into shares and generates file-identifier
shares using obfuscation techniques. A file-identifier share and
a location-share are then combined to create an index-share. A
(t, s) secret-sharing scheme then requires atleast t of s shares to
regenerate the index (location of a file). In comparison to tra-
ditional approaches like replication, secret sharing has better se-
curity guarantees and offers more flexibility. First, it makes it
difficult for an adversary to correlate shares of the same index.
Second, it offers the flexibility of selecting appropriate values of
t and s, achieving a tradeoff between security strength and search
performance.
The contributions of this paper are as follows. First, we pro-

pose a secret sharing based search protocol that uses a DHT-
based index structure [24] to speed up search. We have analyzed
the resistance of SCUBE to two broad categories of DoS attacks,
search infrastructure attacks and file server attacks, under differ-
ent adversarial situations. We have also considered the effect of
churn on the robustness of the protocol and suggested ways to
improve the performance of SCUBE. Finally, our prototype im-
plementation and performance measurements have shown that
SCUBE delivers an acceptable level of QoS. Note that DoS at-
tacks which send large traffic volumes to exhaust servers is be-
yond the scope of this paper.
The rest of the paper is organized as follows. We present re-

lated work in the next section and then present some background

information on secret-sharing and describe the adversary model
in section 3. In sections 4 and 5, we present a detailed descrip-
tion of the protocol including the system model and the different
cryptographic operations that are involved. The different types
of attacks and how SCUBE addresses these attacks are described
in section 6. This is followed by a detailed evaluation of the
protocol through simulations and a prototype implementation in
section 7. We discuss protocol overhead and group key manage-
ment in section 8 and finally conclude in section 9.

2 Related Work
The two main components of our work are location-privacy

and the use of secret-sharing to increase reliability of index based
search systems. Location privacy for index based search infras-
tructures has been studied in [2]. The focus of this work is the
use of randomization to achieve privacy of the content providers.
The main inspiration for our work is LocationGuard [22]. While
the focus of this work is preventing targeted file attacks on file
replicas and hosts by location hiding, our framework is mitigat-
ing the effects of those DoS attacks on P2P storage systems,
which target both file indexes and the files themselves. A Se-
cure distributed Search system called Mingle was proposed in
[29]. The focus of this work is an efficient access control mecha-
nism for searching access controlled data in a small cluster of
computers and priority is given to user convenience and key-
word searches. Different forms of secret-sharing have been used
to increase security and reliability of distributed systems. Pub-
lius [27] uses secret-sharing to generate shares of a key which
is used to encrypt a file and therefore enforces tamper resistance
for file data. as a tool for anonymous communications. Anony-
mous storage based on Rabin’s information dispersal algorithm
was proposed in [6], in which secret sharing is used to break a file
into shares. A secret-sharing based routing approach called Split-
routing was proposed in [3]. Secret sharing has also been used in
software engineering [30]. This work proposed a secret sharing
based compiler solution to achieve confidentiality, integrity and
availability of critical data. Address obfuscation has been used
in [19]. MUTE is a protocol for anonymous file sharing and uses
the concept of virtual addresses to hide the identity of peers in
a MUTE network. We use a similar idea for generating virtual
addresses, but only to achieve location privacy.

3 Background and Assumptions
3.1 Shamir’s Secret-sharing Scheme
The secret-sharing proposed by Shamir [20] is used to share

a secret among a set of participants. A (t,s)-threshold scheme
is a method of sharing a message M among a set of s partici-
pants such that any subset containing atleast t participants can
construct the message. In the context of our fault-tolerant search
scheme, the file location is a secret which is split into s shares
such that any subset of atleast t shares is required to regenerate
the location. Shamir’s scheme uses Lagrange’s polynomial inter-
polation on a field Zp, where p is a prime. The dealer (content-
provider in our case) generates a random polynomial of degree

File-identifier, File-location

File-identifier

(FI)

File-location

(FL)

FI1

FI2

FI3

V(FL)

FL1

FL2

FL3

L
o

c
a
tio

n
 s

h
a
re

 g
e
n

e
ra

tio
n

 (u
s
in

g

S
h

a
m

ir’s
 s

e
c
re

t s
h

a
rin

g
) (2

)

F
il

e
-i

d
e

n
ti

fi
e

r
s

h
a

re
 g

e
n

e
ra

ti
o

n

(u
s
in

g
 o

b
fu

s
c
a
ti

o
n

)
(3

)

Virtual address

generation (1)

Share mixing (4)

FI1, FL3

FI2, FL2

FI3, FL1

FILE INDEX

OBFUSCATED FILE INDEX SHARES

Index-insertion in DHT (5)

Figure 1. Protocol Steps: Step1 – The content provider gener-
ates the virtual address, Step2 – The virtual file-location is split
into shares using secret-sharing, Step3 – File-identifier shares are
generated using an obfuscation technique, Step4 – Random mix-
ing of the file-identifier and file-location shares and generation of
obfuscated file-index shares and Step5 – Insertion of the index-
shares into the Chord DHT

t− 1:
f(x) = a0 + a1x+ a2x

2 + · · ·+ at−1xt−1 (1)

This polynomial is constructed over a finite field Zp and the co-
efficient is the secret (file-location). The value of p is public. The
other coefficients are randomly selected by the content-provider
and the location-shares are calculated as follows: sharei =
(xi, f(xi)), i = 1..s. The secret can then be reconstructed as
follows:

a0 = f(0) =
tX

i=1

yi

tY
j=1,j 6=i

−xj
xi − xj

(mod p) (2)

The complexity of Lagrange interpolation is O(t log2 t).

3.2 Adversary Model
We assume a threat model in which the adversary controls the

actions of several adversary agents. An adversary agent con-
trols the actions of a compromised node. Thus the adversary
set consists of colluding adversary agents. We use terminology
from [18] to describe the threat model. The adversary agents
at the compromised nodes can tamper or destroy the file index
shares hosted at these nodes (Active/Internal adversary). We
also assume that the adversary can only compromise the index
hosting nodes but cannot compromise communication mediums.
On the other hand, the adversary can use packet sniffing on traf-
fic originating at a good node and can therefore observe query

packets (Passive/External adversary). We assume that the un-
derlying network layer is secure and the adversary can only ob-
serve the query request packets that are addressed to it during a
query lookup. Moreover, the adversary follows the Chord pro-
tocols correctly (Routing, Stabilization, Finger table updates and
so on). The adversary can initiate two types of Denial of Ser-
vice attacks. The adversary agents at different compromised
nodes can tamper the file-index shares hosted at those nodes
thereby breaking the search infrastructure. Moreover, by observ-
ing search queries and issuing bogus queries, an adversary can
possibly reduce the size of the set of possible content providers
for a particular file. This can result in targeted file attacks. We
assume that a fraction f of a total of N nodes are compromised
and therefore act as malicious nodes.

4 Protocol Overview
We first present a general overview of SCUBE. Each file in

the storage overlay is associated with an unique identifier. Search
protocols use keywords to search for documents. We assume that
each file’s identifier/keyword is unique which may be semanti-
cally attached to the content of the file. The index of each file is
a tuple - {file-identifier, file-location}. The content-provider for
a particular file first generates a virtual address using it’s group
key. The concept of virtual address has been used in MUTE [19]
and is used for obfuscating the actual IP address. This virtual
address is then split into s shares using Shamir’s (t, s) secret-
sharing scheme. Thus, even if an adversary manages to acquire
atleast t shares, all it can generate is the virtual address. The
virtual address concept therefore provides a second level of se-
curity. To generate the corresponding file-identifier shares, a
keyed-hash function based obfuscation technique is used. This
obfuscation of the file-identifier ensures that it is very difficult
for an adversary or group of adversaries to correlate shares for
the same file during a normal search operation. This is applica-
ble to search schemes in which file identifiers are semantically
attached to the file content. Each file-index share is then gen-
erated as {file-identifier share, file-location share} and inserted
into the DHT (See figure 1 for the protocol steps). A searcher
then generates the locations of atleast t untampered shares and
generates the virtual address of the content provider. Finally the
searcher generates the correct IP address of the content-provider
by decrypting the virtual address using the group key. One of
the basic requirements of SCUBE is that a searcher must possess
the correct group key and must know the correct file-identifier.
This aspect of SCUBE is similar to the concept of location-keys
in LocationGuard [22]. We also assume that it is possible for a
searcher to generate the locations of file replicas once the actual
physical address of the file server can be generated.
Thus SCUBE has two levels of defense against malicious enti-

ties. First, by obfuscating the file identifiers and then distributing
the shares, it makes it difficult for an adversary to correlate the
shares. Thus it is very difficult for an adversary to regenerate the
virtual location of a file. Moreover, by distributing the shares, the
availability of indexes is improved. Second, even if the virtual
address is generated by an adversary, it is very difficult to gen-

K Symmetric group key
N Total number of nodes
f Fraction of malicious nodes
(t,s) Share scheme used
Zp Field used in secret-sharing
EK(x) Pseudo-random function with input x

Table 1. Protocol Notations

Protocol step Overhead
Share generation O(st2) {Computational}

O(s) {Cryptographic}
Share distribution O(slogN) {Traffic}
Share gathering O(tlogN) {Traffic}

O(t) {Cryptographic}
File location generation O(1) { Cryptographic }

O(tlogt) {Computational}

Table 2. Protocol overhead

erate the physical address of the file server without knowing the
correct group key. Table 3 shows the cryptographic operations
used in SCUBE. The obfuscated file identifiers are 20 bytes in
length.

5 System Architecture and Implementation
We assume an unstructured P2P based storage overlay with a

total of N nodes. To enable search for files hosted at a node,
a DHT based search structure is used. Each file is associated
with a file-identifier which can be a keyword and a file-index
is represented by the tuple {file-identifier,location}. To ensure
location privacy, shares of a file-index are generated using the
secret-sharing scheme and different shares are hashed to different
nodes in the DHT. Each node has a symmetric group key and
nodes in the same group have search-access to content hosted in
that group. We leave the discussion on group key management
to section 8. SCUBE uses the notations shown in Table 1.

5.1 Generation of File-index Shares
To ensure location-privacy, each file index is broken into s

index-shares of which a minimum of t shares are required to re-
generate the index. Each index share consists of two compo-
nents: {fileid-share, location-share}. Figures 2 and 3 describe
the steps of the search scheme.
Generation of Location Shares: The location shares are gen-

erated using shamir’s secret-sharing scheme (see Section 3). The
location of a file (32-bit ip address of the content-provider) is en-
crypted using K to generate a virtual address. Different shares
of this virtual address (location-shares) are then generated using
shamir’s scheme.
Generation of File-identifier and Index Shares: The fol-

lowing procedure is used to generate file-identifier shares. Let
us consider a file with identifier I. Then the jth share of I is
represented as

Ij = EK(I||j), j = 1 · · · s

Cryptographic op. Key used
Virtual address generation 192 bit AES key

Generation of obfuscated file identifiers HMAC-SHA1

Table 3. Cryptographic operations

where || can be a concatenation or any other operation. Thus
each share of I is obfuscated using the pseudo-random func-
tion (keyed hash function in SCUBE) with group-key as input.
The index-share is finally generated by a randommix-and-match
of the file id and location shares.
Note that each location share generated in the previous step

could have been combined with the file-identifier to generate the
index share. This approach is vulnerable to leak of privacy. A
group of colluding adversaries which host different index-shares
of the same file can correlate the shares and gather enough shares
to regenerate the virtual address of the file. Therefore the proto-
col requires the generation of file-identifier shares also.

5.2 Distribution of File-Index Shares
Each share generated in the previous step is then inserted into

the DHT using chord routing protocol. We assume that the file
servers are part of the chord ring and they insert the indexes
of their files through trusted proxies or forwarders. To ensure
byzantine fault tolerance, there should be a very low probabil-
ity of two or more shares getting hashed to the same node. For
a uniformly distributed chord ring, the Birthday Paradox [26]
gives the relationship between N and s for which the aforemen-
tioned probability is low. Birthday Paradox states that if s keys
are randomly hashed to N nodes and s = Ω(

√
N), then atleast

one of the nodes is likely to store more than one key. Thus, for
a 1000 node network (N=1000), a value of (s < 31) should be
selected.

5.3 Searching File-Index Shares
Secret-sharing allows any searcher or a group of index-hosting

nodes to generate the location of a file by collecting t or more
shares. Thus the IP address of each file is encrypted into a virtual
address. This ensures that only a legal searcher can generate the
physical location of a file by collecting enough shares.
A legal searcher can generate the file-identifier shares using

the method described in section 5.1. After generating s shares,
it can initiate search for t or more shares. The search for each
share uses the Chord routing protocol. Thus the average number
of hops required for searching a single file is t

2 logN .

5.4 Generating File-Location
A legal searcher can determine the file location from the vir-

tual address and atleast t untampered shares are needed to gener-
ate the virtual address. Thus a searcher collects a set of t shares
and generates the virtual address. If the address generated is bo-
gus (either the IP address does not exist or the node with the IP
address does not possess the file), the searcher repeats the pro-
cess until the correct virtual address is generated.

/* Generate virtual address */
Virtual-address = EK(ip-address)
/* Generate location shares using secret-sharing */
Zp: public, (t,s): public
1. Select coefficients a1,a2...at−1
2. Generate (xi, f(xi)) ∀i = 1..s
/* Generate file identifier shares */
Ij = EK(I||j) ∀j = 1...s
/* Generate index shares */
Randomly mix and match locations shares and file-identifier
shares to generate file-index shares F1, F2 · · ·Fs.
/* Distribute index shares */
Distribute the index shares on the chord ring using the following
API:
for each Fj , j=1...s

PUT(Ij , (xj , f(xj)))

Figure 2. Share generation and distribution

/* Collect atleast t index shares */
Searcher generates the file identifier shares (same procedure as
during generation) and initiates search using the following API:
for each Ij , j=1...t

GET(Ij)
After collecting atleast t untampered shares, searcher generates
the virtual address as follows:
Virtual address = a0 = f(0) {From eqn 2}
/* Generate file location */
Ip-address =DK(a0)

Figure 3. Share gathering and location generation

6 Analyses of Attack Scenarios
6.1 Search Infrastructure Attacks
A group of colluding adversaries can tamper the file-index

shares stored at the compromised nodes which can break the
search infrastructure. The adversary strategy would be to de-
stroy atleast (s− t+ 1) shares of a single file index to make the
file index unavailable to a legal searcher. This is because atleast
t shares are needed to regenerate the virtual address of the file
server.
The group of colluding adversaries can randomly compromise

a set of nodes and tamper the file-index shares stored at those
nodes. A second approach that can be used by adversaries is to
observe queries routed through them and log information about
the index providers. Due to Chord routing properties, an adver-
sary can easily know the identity of the index provider if it is the
predecessor node on the chord ring. Assuming that a group of
adversaries gather information about index providers for queries
routed through them, they first need to correlate index shares
of the same file and then compromise the index provider nodes.
Note that it is very difficult for an adversary or group of adver-
saries to correlate two obfuscated file identifiers as belonging to
the same file. The keyed hash function (HMAC-SHA1) is used
to generate the obfuscated file identifiers. Thus the obfuscated
file identifier is a random 160 bit string and it is very difficult
to correlate two random 160 bit strings as transformations of the

Figure 4. Variation of reliability with churn rates

Figure 5. Variation of reliability
with overlay size

Figure 6. Search success rate (hop-
limit in logarithmic scale)

Figure 7. Reliability vs. share
scheme

same file identifier.

Sybil Attacks In Sybil Attacks [7], an adversary introduces a
large number of corrupt nodes to control certain regions of the
chord ring. Targeted node attack [21] is a sybil attack in which
the adversary corrupts certain areas of the identifier circle and
this degrades the search performance. The effect of such local-
ized attacks can be mitigated by placing different shares of the
same file identifier in disparate regions of the chord identifier
circle as has been observed in [21].

6.2 File-server Attacks
In File-server attacks, the adversaries employ different strate-

gies to detect the location of a file and attack the file-server
nodes. The adversaries can observe and log the queries routed
through them. By observing the query traffic, the adversaries can
then try to narrow down the set of possible initiators of the query
and correlate the shares which originate from the same initiator.
Let us assume that a group of adversaries can correlate a set of
shares that they have observed and let p be the probability that an
adversary lies on the search path. Then for a (t, s) share scheme,
the probability that the virtual address can be generated (pa) is
1
pt . When a large fraction of nodes are compromised, a higher
number of shares is favorable.

Traffic Analysis Attacks In a Traffic Analysis attack, an ad-
versary observes search traffic generated in the overlay and a
group of colluding adversaries then use this information to corre-
late shares of the same query. Since for each file that is searched,
atleast t queries are generated at the initiator, an adversary can
use the traffic pattern to correlate shares. Note that SCUBE gen-

erates additional traffic due to the additional number of shares
that have to be collected for integrity checking. One solution to
thwart a Traffic Analysis Attack is to flatten the traffic pattern.
Thus instead of generating a burst of traffic, the initiator spreads
out the request for the different shares. A second solution is ob-
fuscating the traffic pattern by Share Mixing. In Share Mixing,
shares from different queries are mixed together in a single burst
of traffic from the query initiator. We refer the reader to [9] for
details.
File frequency Attacks File frequency attacks was studied in

[22] in the context of read access on file replicas and an opti-
mum value for the number of replicas was suggested. These
attacks use the property that if file popularity is known to the
adversaries, then by observing query traffic the file location can
be deciphered. If file popularity follows a zipf distribution [4],
then the adversaries can try to relate the set of observed queries
to a set of files. Note that in the context of SCUBE, this can help
in deciphering the relationship between obfuscated file identi-
fiers for a particular file and the file itself. We observe that for a
(t, s) scheme, as s/t increases, the probability of a file frequency
attack decreases (We refer the reader to [9] for a detailed proof).
Other types of attacks and how SCUBE handles those attacks is
also discussed in [9].

7 Experimental Evaluation
We carried out some simulation based experiments to evaluate

SCUBE using our discrete event simulator. A maximum of 1000
nodes were used in our simulations and the BRITE topology gen-
erator [5] was used to generate the physical topology. The topol-
ogy was generated using the ASmodel. We use a chord identifier

length of 16 bits. Besides the finger table and other maintenance
structures, each node also maintains a share cache. We used a
maximum of 5000 file-index insertions in our experiments. A
search query was randomly generated every second from a node
which does not possess the corresponding file. A random frac-
tion of the nodes in the overlay were selected as malicious nodes
with the maximum value being 0.2. To consider the effect of
different sets of adversary nodes in the overlay, we generated
different initial overlay configurations for each experiment.
We first consider the resilience of SCUBE to infrastructure

attacks. The primarymetric used in evaluating the DoS resilience
of the protocol is Reliability.

Reliability =
No of successful searches
Total number of searches

We vary the fraction of malicious nodes and consider different
threshold schemes. In our experiments, we vary the values of
t and s (Our choice of values for s and t satisfies the condition
derived in section 5.2). An increase in the value of t increases
the computational overhead at a legal searcher. Moreover, an in-
crease in s and t generates additional traffic during share distribu-
tion and share gathering respectively. Since an adversary needs
to tamper atleast (s−t+1) shares of an index to make it unavail-
able, an increase in t for given s decreases the search reliability.
On the other hand, a small value of t increases the probability
that the adversary can correlate shares and therefore launch file
server attacks. Figure 7 shows the variation of reliability with
the fraction of malicious nodes for different share schemes. We
observe that the reliability is quite high (about 0.8) even for a
large fraction of malicious nodes (f=0.1). With an increase in
the value of t, reliability drops marginally. This is because the
probability of the shares getting tampered increases. We also
study the effect of overlay size on the DoS resistance of the pro-
tocol. Each experiment consisted of several runs to include the
effect of different random distributions of malicious nodes. We
assume a linear increase in the number of nodes that are compro-
mised. Therefore, the fraction of malicious nodes is kept con-
stant for each overlay size. If we consider the average case, the
fraction of the identifier circle covered by the malicious nodes
remains the same and hence there is not much of a variation in
the reliability. Figure 5 shows reliability vs. overlay size plot for
f = 0.1when (2,4) share scheme is used. As the overlay size in-
creases, the density of nodes on the identifier circle increases and
each node then hosts a smaller fraction of indexes (assuming a
constant number of searches). This decrease in the fraction of in-
dexes hosted by malicious nodes is compensated by an increase
in f and hence the number of tampered shares remains more or
less constant.
P2P networks are characterized by dynamic membership be-

cause nodes join and leave rapidly. This results in Churn. Pre-
vious studies [12] have shown that a high churn has a significant
negative impact on the performance of protocols. We use simula-
tions to observe how realistic node join and leave scenarios affect
search performance. Our churn model is based on the model pro-
posed in [14]. We vary the join and leave rates of the nodes in our
simulations to achieve varying degrees of churn. Figure 4 shows

the effect of churn on the search reliability for different sets of
parameters. A churn value of 0 means a static network and a
value of 1 means a node join and leave rate of 1 per second. A
95% confidence interval is used in our plots. We observe that
a there is no significant impact on the reliability at high churn
rates. A (2,6) scheme shows a reliability of almost 1 for f =
0.05 and the reliability marginally drops for a higher fraction of
malicious nodes but does not show significant changes with an
increase in churn rate (frequency of node joins and leaves). We
see a similar pattern for a (2,4) scheme.

7.1 Search Performance
In Chord, the average number of hops required for searching a

key is 12 logN . Thus a (t, s) scheme would require
t
2 logN hops

on an average. Besides Data-caching, SCUBE also uses Share-
caching to improve the search performance. Each node main-
tains a share and data cache. A share cache consists of the most
recently downloaded shares and each share is tagged with the file
identifier. We compare the search performance of SCUBE (with
share-caching) with Random scoped flooding [11] which is simi-
lar to Gnutella [8]. The number of neighbors for each node in the
overlay is in the range [3,8], according to the original Gnutella
protocol. For a given hop-limit, we plot the number of success-
ful queries that are answered. Figure 6 shows the query success
rate for an overlay size of 600. In the simulations the MAX-
NEIGHBOR parameter is set to 8 and the initial SCOPE for each
query is set to 5. For small networks, the search performance
of SCUBE is slightly better than flooding and performance im-
proves with a smaller number of shares. On the other hand, for
a large network, SCUBE performs appreciably better than flood-
ing. For a network with N=600, even a (2,6) share scheme shows
an improvement of about 90% over random flooding. This is be-
cause in flooding, search time is O(N) and therefore an increase
in the network size has a linear increase in search time on an av-
erage. On the other hand, even with an increase in the number
of shares, search time in SCUBE has a logarithmic increase. We
also plot the search success rate for Chord as a reference. Ob-
serve that the use of a single index (as opposed to shares) would
improve the search time but such an approach would not be fault
tolerant.

8 Discussions
We have also implemented a prototype of SCUBE and tested

it on the PlanetLab [16] testbed. It runs as an application and
consists of about 6000 lines of java code. For lack of space, we
refer the reader to the technical report [9] for a detailed discus-
sion of the implementation. SCUBE incurs acceptable crypto-
graphic, storage and bandwidth overhead. Figure 2 shows the
number of cryptographic operations during each step of the pro-
tocol. To give a quantitative estimate, a successful search for a
(2,6) scheme requires about 0.04 ms for generation of obfuscated
identifiers and 0.04 ms for decryption of virtual address (assum-
ing an average AES decryption rate of 3.2 Mbps). We again
refer the reader to [9] for a detailed discussion on the overhead.
Finally, we would like to touch on the issue of Group key man-

agement for enforcing access control in distributed systems. Ef-
ficient group key management and key distribution schemes have
been widely studied in literature [1, 28]. Group key management
can be either centralized (existence of a centralized server) or
based on distributed group key agreement protocols like Diffie-
Hellman [23]. We do not specify any particular group key man-
agement scheme for SCUBE since it is beyond the scope of this
paper. We assume that a group of users can share a group key
and use this key to search for files within that group. Moreover,
a single file owner can give different access rights to different
users for the same set of files. In such a case, it is the responsi-
bility of the file owner to distribute the keys securely to the user.
Finally, the user needs to store the group key securely using some
hardware or software encryption mechanism.

9 Conclusion
We have proposed a secret sharing based search protocol that

uses a DHT-based index structure to speed up search. We have
analysed the resistance of SCUBE to two broad categories of
DoS attacks, search infrastructure attacks and file server attacks,
under different adversarial situations. We have also considered
the effect of churn on the robustness of the protocol and sug-
gested ways in which the performance of SCUBE can be im-
proved. Our prototype implementation and performance mea-
surements have shown that SCUBE delivers an acceptable level
of search performance. As part of our future work, we plan
to study the robustness of SCUBE under more complicated at-
tack models and to incorporate a mechanism to detect malicious
nodes within the network. We would also like to study the effect
of share re-generation and relocation on search performance.

References

[1] S. Banerjee and B. Bhattacharjee. Scalable secure group commu-
nication over ip multicast. In JSAC Special Issue on Network Sup-
port for Group Communication, volume 20, pages 1511–1527,
2002.

[2] M. Bawa, R. B. Jr., and R. Agrawal. Privacy-preserving indexing
of documents on the network. In Proceedings of the 29th Very
Large Databases(VLDB) Conference, Berlin, Germany, 2003.

[3] N. Borisov and J. Waddle. Anonymity in structured peer-to-peer
networks. Technical Report UCB/CSD-05-1390, EECS Depart-
ment, University of California, Berkeley, 2005.

[4] L. Breslau, P. Cao, and L. Fan. Web caching and zipf-like distri-
butions: Evidence and implications. In Proceedings of the 18th
IEEE Infocom, 1999.

[5] BRITE. http://www.cs.bu.edu/brite/.
[6] R. Dingledine, M. J. Freedman, and D. Molnar. The free haven

project: Distributed anonymous storage service. In Workshop on
Design Issues in Anonymity and Unobservability, pages 67–95,
2000.

[7] J. R. Douceur. The sybil attack. In Proceedings of the 1st Inter-
national Workshop on Peer-to-Peer Systems(IPTPS), 2002.

[8] Gnutella. http://gnutella.wego.com.
[9] http://archives.ece.iastate.edu/secure/00000247/01/tr01.pdf.

Scube: A dos resistant distributed search protocol. Technical
Report TR-2006-04-23, Computer Engineering, Iowa State
University, Ames, 2006.

[10] KaZaA. http://www.kazaa.com.
[11] J. Li, J. Stribling, R. Morris, M. F. Kaashoek, and T. M. Gil. Ran-

dom walks in peer-to-peer networks. In Proceedings of the 23rd
IEEE Infocom, 2004.

[12] J. Li, J. Stribling, R. Morris, M. F. Kaashoek, and T. M. Gil. A
performance vs. cost framework for evaluating dht design trade-
offs under churn. In Proceedings of the IEEE Infocom, 2005.

[13] J. Liang, N. Naoumov, and K. W. Ross. The index poisoning
attack in p2p file sharing systems. In Proceedings of the 25th
IEEE Infocom, 2006.

[14] D. Liben-Nowell, H. Balakrishnan, and D. Karger. Analysis of the
evolution of peer-to-peer systems. In Proceedings of the 21st An-
nual Symposium on Principles of Distributed Computing, 2002.

[15] Napster. http://www.napster.com.
[16] PlanetLab. http://www.planet-lab.org.
[17] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Schenker.

A scalable content-addressable network. In Proceedings of the
2001 ACM SIGCOMM, San Diego, CA, 2001.

[18] J.-F. Raymond. Traffic analysis: Protocols, attacks, design issues
and open problems. In H. Federrath, editor, Designing Privacy
Enhancing Technologies: Proceedings of International Workshop
on Design Issues in Anonymity and Unobservability, volume 2009
of LNCS, pages 10–29. 2001.

[19] J. Rohrer. Mute: Simple, anonymous file shar-
ing,http://mutenet.sourceforge.net,2004.

[20] A. Shamir. How to share a secret. Communications of the ACM,
22(11):612–613??, 1979.

[21] E. Sit and R. Morris. Security considerations for peer-to-peer dis-
tributed hash tables. In Proceedings of the 1st International Work-
shop on Peer-to-Peer Systems(IPTPS), 2002.

[22] M. Srivatsa and L. Liu. Countering targeted file attacks using
locationguard. In Proceedings of the 14th USENIX Security Sym-
posium, 2005.

[23] M. Steiner, G. Tsudik, and M. Waidner. Diffie-hellman key distri-
bution extended to group communication. In Proceedings of the
3rd ACMConference on Computer and Communications Security,
1996.

[24] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakr-
ishnan. Chord: A scalable peer-to-peer lookup service for internet
applications. In Proceedings of the 2001 ACM SIGCOMM, San
Diego, CA, 2001.

[25] C. Tang, Z. Xu, and M. Mahalingam. Peersearch: Efficient infor-
mation retrieval in peer-to-peer networks. In Proceedings of the
HotNets -I, 2002.

[26] W. Trappe and L. C. Washington. Introduction to cryptography
with coding theory. Technical report, 2001.

[27] M.Waldman, A. Rubin, and L. Cranor. Publius: A robust, tamper-
evident, censorship-resistant and source-anonymous web publish-
ing system. In Proceedings of the 9th USENIX Security Sympo-
sium, pages 59–72, 2000.

[28] C. Wong, M. Gouda, and S. Lam. Secure group communications
using key graphs. IEEE/ACM Transactions on Networking, 8:16–
30, 2000.

[29] Y. Xie, D. O’Hallaron, and M. K. Reiter. A secure distributed
search system. In Proceedings of the 11th IEEE International
Symposium on High Performance Distributed Computing, 2002.

[30] T. Zhang, X. Zhuang, and S. Pande. Building intrusion-tolerant
secure software. In Proceedings of the 3rd International Sympo-
sium on Code generation and optimization, 2005.

