
An Efficient Hardware Support for Control Data Validation

Yong-Joon Park, Zhao Zhang
Department of Electrical

and Computer Engineering
Iowa State University

Ames, IA, 50011, USA
{ypark,zzhang}@iastate.edu

Gyungho Lee
Department of Electrical

and Computer Engineering
University of Illinois at Chicago

Chicago, IL 60607, USA
ghlee@uic.edu

Abstract

Software-based, fine-grain control flow integrity (CFI)
validation technique has been proposed to enforce control
flow integrity of program execution. By validating every
indirect branch instruction, it can prevent various control
flow attacks, but at the cost of non-trivial overhead: up to
50% and on average 21% as reported in a case study. We
propose a new hardware mechanism to accelerate the CFI
validation. It utilizes the branch prediction unit of mod-
ern processors to reduce the frequency of necessary valida-
tion, and proposes to use a small hardware structure called
indirect branch filter cache (IBF cache) to further reduce
the frequency of validation. The small IBF cache buffers
and reuses previous validation results, which dramatically
reduces the frequency of validation for all workloads we
have studied. We collect the trace of indirect branch of
various workloads on an Intel P4 computer and conduct
trace-based simulation to estimate the performance over-
head. Our results show that the overhead is negligible for
all SPEC CPU2000int, SPEC CPU2006int programs, TPC-
C, WebStone and FTP server benchmarks.

1 Introduction
Control flow attack have been frequently exploited to

make the first breach to computer system security. Many
service programs have unintended vulnerabilities in their
dynamic execution environments, which are explored by at-
tackers to redirect their control flow to harmful code. Con-
trol flow attacks not only cause breaches to individual sys-
tems; more often, they lead to large-scale attack such as
distributed DOS (denial of service) attacks and may result
in monetary loss of millions of dollars. Unfortunately, the
vulnerabilities leading to control flow attacks are inherent
and pervasive in software as reported by the National Vul-
nerability Database (NVD) [11].

To prevent those attacks, one of the solutions can be val-

idating all indirect branches as their branch and target ad-
dress pair. However, it is also necessary to implement this
type of validation with hardware support for the overhead
to be reasonable [1, 2, 15, 13]. Abadi et al. [1] proposed
control flow integrity (CFI) enforcing mechanism by using
binary instrumentation techniques. It identifies valid tar-
get and breach pair statically and inserts checking routine
before a indirect branch instruction. It demonstrates the ef-
fectiveness of the mechanism by testing various attack sce-
narios. However, it incurs non-negligible performance over-
head: up to 50% and on average 21% for SPEC CPU2000int
benchmarks. In this study, we propose an efficient design to
validate every indirect branch as an address pair of (source,
target) with pre-generated valid set of address pairs, which
can be generated statically by compilers or dynamically by
run-time systems.

The core part of the design is a small IBF Cache (Indirect
Branch Filter Cache), which dramatically reduces the per-
formance overhead at the cost of a small hardware cache.
With IBF cache, the performance overhead is negligible
for all workloads we have studied. The IBF cache buffers
and reuses recently validated address pairs. Its structure is
somewhat similar to that of a BTB (branch target buffer);
however, it uses an XOR-based indexing schemes to elimi-
nate the conflicts from multi-target indirect branches, which
are common to the BTB structure1. Our simulation results
show that the miss rate of the IBF cache (2K entries by de-
fault) is less than five misses per 100,000 indirect branches
on average for the SPEC CPU2000int benchmarks; and
less than one miss per one million committed instructions.
The good performance is the result of good temporal lo-
cality in program control flow. Since the overall perfor-
mance overhead is a product of the miss frequency and the
per-validation overhead, the IBF cache reduces the over-
all performance overhead significantly. Furthermore, it is

1The IBF cache is accessed at the execution stage when the branch
target address becomes known, so it can use both the branch and target
addresses in its indexing.



now possible to use relatively complex validation methods,
which may use off-chip storage.

We have evaluated the hardware design using a wide
range of workloads, including the SPEC CPU2000int
and CPU2006int programs, TPC-C workloads, WebStone
benchmarks, and an FTP server benchmark. The perfor-
mance overhead is virtually non-existent for many work-
loads and less than 2% for all benchmarks.

The rest of the paper is organized as follows. Section 2
introduces the background and the related work. Section 3
describes our design of the IBF cache and control flow val-
idation. The experiment environment is described in Sec-
tion 4. Section 5 presents the experiment results and analy-
sis. Finally, Section 6 discusses limitations and future work.

2 Background and Related Work
Background Control flow attack is an elementary form
of attack to computer systems, which is commonly used
as the first step to gain the access to a system. It exploits
the vulnerabilities in software, such as the lack of boundary
checking, to alter the normal program control flow. That
is usually done by overwriting control data, which is the
address of the next instruction to be executed such as func-
tion return address, function points, or jump table address.
One of the well known example is stack-based buffer over-
flow attack; the normal control flow is altered by rewriting
the return address stored in the program stack. Those at-
tacks may be prevented by compiler or hardware defense
mechanisms [4, 6, 12]. However, control flow attacks may
take sophisticated forms that are more difficult to prevent
than the stack-based buffer overflow attack. For example,
it may overflow control data in data or heap segments, such
as function pointers, GOT, .dtors and virtual function ta-
ble. It may also make the control flow jump to existing
code such as library functions making system calls, which
are safe with normal control flow but may cause damages in
abnormal execution. Unfortunately, the related vulnerabili-
ties are widely spread in may programs.

Currently, most microprocessors have branch prediction
facilities; branch target buffer (BTB), branch history table
(BHT) and return address stack; and some processors have
enhanced support for indirect branch prediction. BTB im-
proves performance by predicting the target of branch by us-
ing stored branches target recently taken. Hence it may re-
duce the frequency of the control flow validation by check-
ing only when branch predictor predicts the target incor-
rectly for indirect branch. Note that all the branches stored
in the branch predictor have been validated before due to
cold miss. Consider a simple example: A program has a
simple loop that calls a function, which performs simple
calculation, via indirect function calls over million times.
A software based approach will do one validation for each
function call or return, while in our approach only two val-

idations are needed for the whole loop.
Software/Hardware Methods to Maintain Control Flow
Integrity One type of work is to validate the execution of
every branch instruction with the valid control flow infor-
mation of the program. CFI [1] is software fine-grain con-
trol flow integrity checking mechanism. It instruments the
program executable to insert a label right before each func-
tion or a code block. The label is write protected because it
is in the code segment. Every indirect branch2 instruction is
also rewritten as a small piece of code that checks the label
before the jump. The labels are constructed from static anal-
ysis of the control flow graph (CFG) of the program. When
compared with our work, the overall performance overhead
is significant. Additionally, in certain cases, the use of label
cannot preserve the precise CFG information; for example,
if two indirect branches share one target (and the associated
label) but not other targets. The overhead is non-trivial: up
to 50% and on average 21%. A hardware version of CFI
with ISA extension [2] was later implemented to reduce
the overhead. New instructions are introduced to replace
the guard code with a single instruction. In the initial per-
formance evaluation, five integer benchmarks from SPEC
CPU2000int are observed with test input set. They reported
that the results showed maximum 7% performance over-
head and around 2% on average. Nevertheless, the afore-
mentioned issue of label sharing still exists.

Zhang et al. [15] also propose a hardware mechanism to
validate branch address pairs and control flow path with dy-
namically generated control flow information. Their hard-
ware design, however, is more complex than ours because
of the use of hash table and other complex structures to
store the control flow information. In our design, the IBF-
cache makes the whole hardware design very simple. The
reported performance overhead is about a few percent in the
study, but the evaluations are done with much shorter rela-
tive memory latency which 30 processor cycle since it is
targeting embedded system.
Hardware Information Tracking Another form of hard-
ware protection can cover attacks to all memory regions but
requires much more extensive changes of the CPU internals.
Suh et al. [14] proposed dynamic flow information tracking
that tracks every datum in the memory to see whether the
original source is from external I/O, which is suspicious,
or from the program internal, which is trustworthy. As for
the hardware changes, an one-bit tag is required for every
memory datum and CPU registers, and CPU data paths are
changed to propagate the tags during address calculation.
When suspicious data is used as control data, it raises an
alarm. Crandall and Chong [5] proposed Minos that also
tracks the information flow in program execution using one-
bit tags. Instead of tagging spurious data rooted from I/O,

2This paper uses the generic term “indirect branch” and does not dis-
tinguish conditional indirect branch and unconditional indirect jump.

2



r r rTotal # Indi Total # Pairs90% Indi 90% Pairs99% Indi 99% Pairs
gzip 157 274 4 28 8 42
gcc 1921 10099 300 4435 733 7234
mcf 178 289 4 9 16 37

crafty 310 1410 25 527 42 616
parser 455 1327 37 326 95 590
eon 875 2426 53 331 85 365

perlbmk 427 1164 22 56 27 61
gap 1014 4233 134 2006 379 3026

vortex 739 3697 46 883 162 1695
bzip2 146 293 6 50 9 86
twolf 325 1264 37 213 72 671

Table 1. Indirect branch profiling for SPEC
CPU2000int.

Minos uses the bit to mark high-integrity data, which can
be used as control data. An alarm will be raised if a low-
integrity data is used as a target address. In the Minos im-
plementation, data created before a timestamp is marked as
high integrity. Additionally, the values rooted from the pro-
gram counter are also of high integrity.

Run-time Systems Program shepherding [9] is derived
from DynamoRIO runtime optimizer and detects unautho-
rized control transfer. It translates executable binaries and
generates code blocks. In order to achieve low performance
overhead, DynamoRIO uses software code cache to execute
newly constructed fragments natively. When the control
transfer occurs, DynamoRIO code gets the program con-
trol and dispatches the instructions from code cache. Since
the address of instructions in code cache differs from the
address in original binaries, it requires address lookup in
control flow transfer cases. Therefore this mechanism can
identify the control instructions and verify the control data.
It establishes general security policy to restrict certain types
of control transfers and activities.

3 Hardware Support for CFI Monitoring

The proposed CFI validation system consists of the hard-
ware IBF-cache and software CFI monitoring tool. In a
proof-of-concept design, we have used the performance
monitoring [8] features of the Intel Pentium 4 processors
to validate the effectiveness and analyze the performance
overhead. We configure the performance monitoring fea-
tures to generate an interrupt on every indirect branch mis-
prediction. The software CFI monitoring tool obtains the
control and verifies the CFI upon the interrupt. In other
words, the tool implements software-based validation and
utilizes the branch prediction unit of the Pentium 4 proces-
sor to reduce the frequency of validation. We have had two
findings: First, the software tool can successfully intercept
control flow attacks for various workloads we tested, in-
cluding SPEC programs, web server and other programs.
Second, the performance overhead is still comparable to
that of the previous study [1]. Our analysis shows that the

overhead comes from the high interrupt and validation la-
tency. However, if the frequency of validation can be fur-
ther reduced, the software validation approach can be very
efficient.

Intel Pentium 4 processor [8] uses branch history table,
branch target buffer and return address stack for indirect
branch prediction. Although the processor achieves low
branch mis-prediction rate, software CFI monitoring tool
still incurs non-negligible performance overhead. There-
fore, we propose the use of IBF-cache to reduce the fre-
quency of the validation. The IBF cache records the indirect
branch address pairs that have been validated recently. It is
a small component and is as fast as L1 caches. For a mis-
predicted indirect branch, the validation starts at the exe-
cute/writeback stage where the branch and target addresses
are known. This address pair is sent to the IBF cache. If
it hits in the cache, then it has been validated. This val-
idation can be done within branch mis-prediction penalty
cycle, hence there will be no overhead for accessing IBF-
cache. Upon IBF cache miss, it generates an interrupt for
CFI monitoring tool to valid control flow with the infor-
mation stored in the off-chip main memory for expensive
validation. If the outcome is negative (no alarm), the moni-
toring tool returns from the interrupt routine. Otherwise, it
raises exception and let software further examines the pro-
gram.

The IBF cache uses an XOR-based indexing scheme,
which are from both the branch address and the target ad-
dress, to avoid misses from indirect branches which have
multiple targets during the program execution. If an indi-
rect branch uses multiple targets, the XORing of the target
address will distribute all branch address pairs of this branch
over the cache address space. Otherwise, those branch ad-
dress pairs will be mapped onto the same cache entry, caus-
ing severe conflicts. XOR-based indexing scheme has been
used in both cache indexing [7] and branch target address
prediction (XORing branch address with branch history).
Nevertheless, the branch target address prediction cannot
use the XORing with branch target address because it is un-
known at the time of branch prediction. This is the reason
the IBF cache may not be replaced by an enlarged BTB.

4 Experimental Methodology

We collected the trace of indirect branch misprediction
on Intel Pentium 4 processor using the Intel VTune Ana-
lyzer. The trace is then fed into a trace-based simulation of
the IBF cache. We also measured the interrupt and valida-
tion overhead. This is done by using our proof-of-concept
software monitoring tool to count the number of validations;
and by measuring the difference of program running times
with and without enabling the software monitoring tool. We
then estimate the overall performance overhead from the
per-validation overhead and the frequency of validation.

3



We have used various workloads in our performance
evaluation: TPC-C workload with Postgres 7.4.13 database
system, WebStone 2.5 benchmark with Apache 2.0.47, and
dkftpd benchmark, FTP benchmark, with vsftpd demon. We
also evaluate SPEC CPU2000int and SPEC CPU2006int
benchmarks. All programs are compiled with gcc 3.3.2 and
run on Redhat Linux with kernel 2.4.26.
• SPEC CPU2000int and SPEC CPU2006int bench-

marks: We use the reference input sets and run all
programs to completion. The CPU2006int programs
have generally more complex source code than the
CPU2000int programs.

• TPC-C workload: TPC-C is an OLTP (on-line trans-
action processing) workload that emulates warehouse
transactions using a database system. We use Postgres
7.4.13 as the supporting database system.

• WebStone 2.5 benchmark: The WebStone benchmark
creates a load on a Web Server by simulating the ac-
tivities of multiple clients. We configure WebStone to
use two different types of access methods, HTML and
CGI, with 10 to 100 simultaneous clients. The under-
lying web server is Apache 2.0.47.

• FTP Workload: We use an FTP demon called vsftpd,
version 1.2.0-5, and an FTP benchmark called dkftp-
bench.

5 Experiment Results

5.1 Profiling of Indirect Branches

We first collected the indirect branch profiling on the In-
tel Pentium 4 processor. We found that the indirect branch
makes up about 1.5% of all instructions. The mis-prediction
ratio for the SPEC integer benchmarks is no more than 10%
and on average 3.1%. Table 1 shows the indirect branch
profiling for SPEC CPU2000int benchmarks. We do not in-
clude CPU2000fp benchmarks because those floating-point
programs are much less branch-intensive and therefore the
performance overhead for them is not a concern. The table
shows that a small subset of static indirect branches make
up a large portion of dynamic indirect branches. The sec-
ond and third columns of the table are the total number of
static indirect branches and the total number of unique tar-
gets, respectively. The fourth column is the number of static
indirect branch instructions that are responsible for 90% dy-
namic indirect branch instructions. The fifth column is the
number of unique indirect branch address pairs that are ob-
served in the execution of 90% indirect branch instructions.
The sixth to ninth columns are similar except that ratios
95% and 99% are used. The profiling results show that it
is very promising to use a small cache to capture the local-
ity existing in the indirect branch address pairs observed in
the program execution; and the frequency of validation may
be significantly reduced by the IBF cache.

5.2 Results for SPEC Benchmarks

Table 2 shows the IBF cache miss rates for all SPEC
CPU2000int and CPU2006int programs with the reference
input sets. The CPU2006int programs are of more interests
because they have more complex source code. Addition-
ally, there are three more C++ programs, omnetpp, astar,
and xalancbmk, which may have high frequency of indirect
branch instructions. For both benchmarks, the IBF cache
miss rate becomes very small when the cache size increases
beyond 1K; the maximum for CPU2006int is 0.898% on
gobmk for the cache size of 1K-entry. The average miss
rate of CPU2006int with 8K-entry is 0.128%. The three
new C++ programs are not very different from the other
programs. Comparing CPU2006int with CPU2000int, the
average miss rate increases slightly for all cache sizes.

Table 3 shows the number of IBF cache misses per
10,000 instructions for SPEC CPU2000int and SPEC
CPU2006int programs. This number is closely related to
the overall performance overhead. It is determined by three
factors of a program: the ratio of indirect branch instruc-
tions, the branch mis-prediction rate and the IBF cache miss
rate. Program gcc has the largest number for all cache sizes
mainly because it has relatively high frequency of indirect
branch instructions. We can give a ballpark estimate of the
overall performance overhead for CPU2000int gcc with an
IBF cache of 2k entries as follows: Assume that the off-
chip validation averagely take 469ns or 1500 cycles on a
3.2 GHz processor, which is measured using the aforemen-
tioned software monitoring tool we developed; and assume
the program CPI is 1.81 [3]. The performance overhead is
about 1500 ∗ 0.091/(10, 000 ∗ 1.81) = 0.65%. Similarly,
we obtain an average performance overhead of 0.0059% for
CPU2000int programs (Miss rate is one miss per million
instructions and CPI is 2.545 on average). In fact, this es-
timate is pessimistic because Intel processors has relatively
high latency in accessing the performance monitoring coun-
ters. Even so, the performance is very good when compared
with the previous work [1, 2], which has up to 50% over-
head and on average 21% overhead. The results for other
IBF cache configurations are not included because of the
space limit. We found that a two-way set associative IBF
cache improves significantly over the direct mapped one
with the same size; and that the improvement diminishes
when the degree of associativity increases beyond four.

5.3 Results for Other Workloads

The other workloads include TPC-C, WebStone and an
FTP server benchmark; see Section 4 for their description.
Table 4 shows the IBF cache miss rate with varying cache
size from 1K to 8K with the set associativity fixed at four.
The TPC-C workload is known to have large instruction
footprint, and therefore the result indicates that the control
flow in TPC-C has good locality. The WebStone benchmark

4



Program 1k 2k 4k 8k
gzip 0.002% 0.002% 0.002% 0.002%
vpr 0.002% 0.002% 0.002% 0.002%
gcc 0.415% 0.297% 0.202% 0.161%
mcf 0.591% 0.591% 0.591% 0.591%

crafty 0.172% 0.110% 0.106% 0.102%
parser 0.271% 0.085% 0.030% 0.028%
eon 0.001% 0.001% 0.001% 0.001%

perlbmk 0.718% 0.046% 0.024% 0.001%
gap 0.042% 0.016% 0.003% 0.001%

vortex 0.015% 0.012% 0.012% 0.012%
bzip2 0.003% 0.003% 0.003% 0.003%
twolf 0.002% 0.002% 0.002% 0.002%

Average 0.186% 0.097% 0.081% 0.075%

(a)

Program 1k 2k 4k 8k
perlbmk 0.071% 0.012% 0.005% 0.004%

bzip2 0.009% 0.009% 0.009% 0.009%
gcc 0.148% 0.089% 0.055% 0.030%
mcf 0.020% 0.020% 0.020% 0.020%

gobmk 0.898% 0.351% 0.117% 0.055%
hmmer 0.023% 0.022% 0.022% 0.022%
sjeng 0.006% 0.004% 0.003% 0.003%

libquantum 0.695% 0.695% 0.695% 0.695%
omnetpp 0.007% 0.004% 0.003% 0.003%

astar 0.568% 0.563% 0.562% 0.562%
xalancbmk 0.320% 0.053% 0.007% 0.004%

Average 0.251% 0.166% 0.136% 0.128%

(b)

Table 2. The IBF cache miss rates for SPEC (a) CPU2000int and (b) CPU2006int benchmarks with the reference
inputs for cache sizes of 1k to 8K entries. The cache set associativity is fixed at four. The numbers in bold type
are the maximum number for a given cache size.

Program 1k 2k 4k 8k
gzip 0.000 0.000 0.000 0.000
vpr 0.000 0.000 0.000 0.000
gcc 0.131 0.091 0.060 0.046
mcf 0.000 0.000 0.000 0.000

crafty 0.023 0.015 0.014 0.014
parser 0.004 0.001 0.000 0.000
eon 0.000 0.000 0.000 0.000

perlbmk 0.003 0.003 0.003 0.003
gap 0.021 0.008 0.001 0.000

vortex 0.000 0.000 0.000 0.000
bzip2 0.000 0.000 0.000 0.000
twolf 0.000 0.000 0.000 0.000

Average 0.015 0.010 0.007 0.005
(a)

Program 1k 2k 4k 8k
perlbmk 0.044 0.008 0.003 0.002

bzip2 0.000 0.000 0.000 0.000
gcc 0.313 0.147 0.088 0.058
mcf 0.000 0.000 0.000 0.000

gobmk 0.007 0.003 0.001 0.000
hmmer 0.000 0.000 0.000 0.000
sjeng 0.002 0.001 0.001 0.001

libquantum 0.000 0.000 0.000 0.000
omnetpp 0.001 0.001 0.000 0.000

astar 0.000 0.000 0.000 0.000
xalancbmk 0.017 0.003 0.000 0.000

Average 0.035 0.015 0.009 0.006

(b)

Table 3. (a) The number of IBF cache misses per 10,000 instructions for SPEC CPU2000int benchmark programs;
and (b) that for SPEC CPU 2006int programs.

has very high miss rates with IBF cache of 1K entries or
less, and drops to less than 1% when the size increases be-
yond 2K. The FTP server benchmark incurs few IBF cache
misses for all sizes. The number is negligible for all the
workloads for cache size of 4K or more entries.

Table 5 shows misses per 10,000 instructions for other
workloads. The Web server benchmark shows high number
of misses due to higher indirect branch ratio (4.17%) and
5.3% indirect branch mis-prediction ratio. Although IBF-
cache performances of the benchmarks is worse than SPEC
benchmarks, the performance degradation will not be no-
ticed, since these programs spend most of time on I/O oper-
ations.

6 Discussion and Future Work
Implementation The proposed IBF cache will be a very
small component in modern processors. Because it is ac-
cessed only on indirect branch mis-predictions, it can be
away from the core pipeline logic on the processor chip and
therefore will not complicate the chip layout design. The

IBF design can be ported to virtually any pipelined, high
performance processors a branch prediction unit. It may re-
quire the hardware support for raising an exception on IBF-
cache miss, but does not require any change to the user-level
ISA.

Storage Overhead The third column of Table 1 shows
the total number of branch pairs in the SPEC CPU2000int
benchmark. The largest number of the branch pair is 10,099
for gcc. Since the branch pair is stored in plain hash table
in our design the storage overhead would be 16 bytes of
branch and target address 2 bytes of link field and 2 bytes
of anchor per each entry. Therefore the maximum storage
overhead for the CPU2000int programs is around 198KB in
the off-chip memory which can be negligible in current sys-
tems. We also find that other benchmarks also have smaller
number of branch pairs (HTTPD 9570, TPCC 4346, and
VSFTPD 2195). The IBF cache has branch address and
target address per each entry. The IBF cache itself will con-
sume 16KB for 2K-entry 32-bit addressing mode and 32KB

5



Workload 1k 2k 4k 8k
TPC-C 0.431% 0.081% 0.001% 0.000%

WebStone 24.496% 3.389% 0.463% 0.180%
WebStone CGI 29.596% 6.369% 0.643% 0.194%

FTP Server 0.125% 0.117% 0.116% 0.116%
Average 13.662% 2.489% 0.306% 0.123%

Table 4. The 4-way set associative IBF cache miss
rates for other workloads with cache size of 1K to
8K entries.

Workload 1k 2k 4k 8k
TPC-C 0.071 0.013 0.000 0.000

WebStone 5.467 0.756 0.103 0.040
WebStone CGI 6.648 1.431 0.144 0.044

FTP Server 0.010 0.009 0.009 0.009
Average 3.049 0.552 0.064 0.023

Table 5. IBF cache cache misses per 10,000 in-
structions for TPC-C, WebStone and FTP server
benchmarks.

for 2k-entry 64-bit addressing mode.

Impossible Path Attack In this paper, we mainly focus
on validating control data to prevent prevalent types of con-
trol flow attacks. Although the real attack has not been re-
ported yet, impossible path attack [15] would bypass our de-
tection mechanism. Impossible path attacks alter only con-
trol decision making data or both control decision making
data and control data in the program. In order to detect the
attack, Zhang et al [15] check the last n branch history infor-
mation for every branches. They also implement a compiler
to identify the impossible path. The impossible path attack
detection mechanism can be easily adopted in our design:
Intel Pentium 4 processor uses a branch history table and
BTB to achieve prediction accuracy for all types of branch
except return instruction, i.e. the branch predictor is already
capable of checking last 16 branch history. Additionally, the
processor has Last Branch Recording (LBR) stack to pro-
vide branch and target addresses of last 16 branches. With
those two existing hardware facilities and the extension of
IBF cache, we can extend our system to check the impos-
sible path attack. We are currently extending our system
to check the attacks by using above extension and adopting
SRAS [10, 12] to further reduce the validation frequency.

7 Conclusion

We have proposed a highly efficient hardware mecha-
nism to accelerate the fine-grain control flow validation. It
uses IBF cache to minimize the performance overhead as-
sociated with frequent validation. We have evaluated the
design using a wide range of applications, including SPEC
CPU2000int, SPEC CPU2006int, TPC-C workloads, Web-
Stone benchmark and an FTP benchmark, and found that
the performance overhead is negligible.

References

[1] M. Abadi, M. Budiu, Ú. Erlingsson, and J. Ligatti. Control-
flow integrity:principles, implementation and application. In
12Th ACM Symposium on Computer and Communication
Security, Alexandria,VA, 2005.

[2] M. Budiu, Ú. Erlingsson, and M. Abadi. Architectural sup-
port for software-based protection. In Workshop on Archi-
tectural and System Support for Improving Software De-
pendability (ASID), San Jose, CA, 2006.

[3] M. Christoper Martinez and E. B. John. Multimedia work-
loads versus spec cpu 2000. In Spec Benchmarking Work-
shop, 2006.

[4] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beat-
tie, P. A. Grier, Wagle, Q. Zhang, and H. Hinton. Stack-
Guard: Automatic adaptive detection and prevention of
buffer-overflow attacks. In Proceedings of the 7th USENIX
Security Symposium, page 63?8, San Antonio, TX, 1998.

[5] J. R. Crandall and F. T. Chong. Minos: Control data attack
prevention orthogonal to memory model. In Proceedings of
the 37th Annual International Symposium on Microarchitec-
ture, Portland, OR, USA, 2004.

[6] M. Frantzen and M. Shuey. Stackghost: Hardware facilitated
stack protection. In In Proceedings of the 10th USENIX Se-
curity Symposium, Washington, DC, 2001.

[7] A. Gonzalez, M. Valero, N. Topham, and J. M. Parcerisa.
Eliminating cache conflict misses through XOR-based
placement functions. In Proceedings of 11th International
Conference on Supercomputing, pages 76–83, Vienna, Aus-
tria, 1997.

[8] Intel Corp. IA-32 Intel Architectures Software Developer’s
Manual. January, 2006.

[9] V. Kiriansky, D. Bruening, and S. Amarasinghe. Secure ex-
ecution via program shepherding. In In Proceedings of 11th
USENIX Security Security Symposium, San Francisco, CA,
2002.

[10] R. B. Lee, D. K. Karig, J. P. McGregor, and Z. Shi. Enlisting
hardware architecture to thwart malicious code injection. In
Proceedings of the 2003 International Conference on Secu-
rity in Pervasive Computing, pages 237–252, Boppard, Ger-
many, 2003.

[11] NVD. National vulnerability database, a comprehensive cy-
ber vulnerability resource. http://nvd.nist.gov.

[12] Y.-J. Park, Z. Zhang, and G. Lee. Microarchitectural pro-
tection against stack-based buffer overflow attacks. IEEE
Micro, 26(4):62–71, July/August 2006.

[13] Y. Shi, S. Dempsey, and G. Lee. Architectural support for
run-time validation of control flow transfer. In International
Conference on Computer Design, San Jose, CA, 2006.

[14] G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas. Secure
program execution via dynamic information flow tracking.
In In Proceedings of the 11th International Conference on
Architectural Support for Programming Languages and Op-
erating Systems, Boston, MA, 2004.

[15] T. Zhang, X. Zhuang, S. pande, and W. Lee. Anomalous path
detection with hardware support. In Proceedings of Inter-
national Conference on Compilers, Architectures and Syn-
thiesis for Embedded Processors, San Francisco, CA, 2005.

6


