Modern DRAM Memory Architectures

Sam Miller
Tam Chantem
Jon Lucas

CprE 585 Fall 2003
Introduction

• Memory subsystem is a bottleneck
• Memory stall time will become dominant
• New architectures & accessing techniques proposed to combat these issues
Outline

• DRAM background
• Introduction to Memory Access Scheduling
• Fine-grain priority scheduling
• Review of DRAM architectures
DRAM Background 1/3

• Dynamic Random Access Memory
 – Dynamic: leakage requires refreshing
 – Random: half-truth, equal read/write time for all addresses

• Built from 1 capacitor, contrast to SRAM
 – 4 to 6 transistors; single bit memory cell is larger & more expensive

http://www.cmosedu.com
DRAM Background 2/3

• Accessing DRAM
 – Think of a square grid: split address in half
 – Half bits for row, other half for column
• Today, most architectures multiplex address pins
 – Read row & column address on two edges
 – Saves space, money
• Typically there are more columns than rows
 – Better row buffer hit rate
 – Less time spent refreshing (just a row read)
DRAM Background 3/3

- Multiplexed address is latched on successive clock cycle
3-D DRAM Representation

DRAM Operations

• Precharge
 – Desired row is read into row buffer on a miss

• Row Access
 – Bank is already precharged

• Column Access
 – Desired column can be accessed by row buffer
Memory Access Scheduling 1/3

- Similar to out-of-order execution
- Scheduler determines which set of pending references can best utilize the available bandwidth
- Simplest policy is “in-order”
- Another policy is “column first”
 - Reduces access latency to valid rows
Memory Access Scheduling 2/3

(A) Without access scheduling (56 DRAM Cycles)

(B) With access scheduling (19 DRAM Cycles)

DRAM Operations:

- **P**: bank precharge (3 cycle occupancy)
- **A**: row activation (3 cycle occupancy)
- **C**: column access (1 cycle occupancy)

Memory Access Scheduling 3/3

• “first-ready” policy
 – Latency for accessing other banks can be masked

• Improves bandwidth by 25% over in-order policy

Fine-grain Priority Scheduling 1/5

• Goal: workload independent, optimal performance on multi-channel memory systems

• On the highest level cache miss, DRAM is issued a “cache line fill request”
 – Typically, more data is fetched than needed
 – But it may be needed in the future

• For a performance increase, divide requests into sub-blocks with priority tags
Fine-grain Priority Scheduling 2/5

- Split memory requests into sub-blocks
 - Critical sub-blocks returned earlier than non-critical

Fine-grain Priority Scheduling 3/5

• Sub-block size can be no less than minimum DRAM request length
• 16 bytes is smallest size for DRDRAM
• Note: memory misses on other sub-blocks of the SAME cache block may happen
 – Priority information is updated dynamically in this case by the Miss Status Handling Register (MSHR)
Fine-grain Priority Scheduling 4/5

• Complexity issues
 – Support multiple outstanding, out-of-order memory requests
 – Data returned to processor in sub-block, not cache-block
 – Memory controller must be able to order DRAM operations from multiple outstanding requests
Fine-grain Priority Scheduling 5/5

• Compare to gang scheduling
 – Cache block size used as burst size
 – Memory channels grouped together
 – Stalled instructions resumed when whole cache block is returned

• Compare to burst scheduling
 – Each cache miss results in multiple DRAM requests
 – Each request is confined to one memory channel
Many new DRAM architectures have been introduced to improve memory sub-system performance.

Goals:
- Improved bandwidth
- Reduced latency
Contemporary DRAM Architectures 2/5

• Fast Page Mode (FPM)
 – Multiple columns in row buffer can be accessed very quickly

• Extended Data Out (EDO)
 – Implements latch between row buffer and output pins
 – Row buffer can be changed sooner

• Synchronous DRAM (SDRAM)
 – Clocked interface to processor
 – Multiple bytes transferred per request
Contemporary DRAM Architectures 3/5

- Enhanced Synchronous DRAM (ESDRAM)
 - Adds SRAM row-caches to row buffer
- Rambus DRAM (RDRAM)
 - Bus is much faster (>300MHz)
 - Transfers data at both clock edges
- Direct RAMBUS DRAM (DRDRAM)
 - Faster bus than Rambus (>400MHz)
 - Bus is partitioned into different components
 - 2 bytes for data, 1 byte for address & commands
Contemporary DRAM Architectures

4/5