Lecture 9: Branch Prediction

Basic idea, saturating counter, BHT, BTB, return address prediction, correlating prediction

Reducing Branch Penalty

Branch penalty in dynamically scheduled processors: wasted cycles due to pipeline flushing on mis-predicted branches

Reduce branch penalty:
1. Predict branch/jump instructions AND branch direction (taken or not taken)
2. Predict branch/jump target address (for taken branches)
3. Speculatively execute instructions along the predicted path

What to Use and What to Predict

Available info:
- Current predicted PC
- Past branch history (direction and target)

What to predict:
- Conditional branch inst: branch direction and target address
- Jump inst: target address
- Procedure call/return: target address

May need instruction pre-decoded

Mis-prediction Detections and Feedbacks

Detections:
- At the end of decoding
 - Target address known at decoding, and not match
 - Flush fetch stage
- At commit (most cases)
 - Wrong branch direction or target address not match
 - Flush the whole pipeline (at EXE: MIPS R10000)

Feedbacks:
- Any time a mis-prediction is detected
- At a branch's commit (at EXE: called speculative update)

Branch Direction Prediction

- Predict branch direction: taken or not taken (T/NT)
- Static prediction: compilers decide the direction
- Dynamic prediction: hardware decides the direction using dynamic information
 1. 1-bit Branch-Prediction Buffer
 2. 2-bit Branch-Prediction Buffer
 3. Correlating Branch Prediction Buffer
 4. Tournament Branch Predictor
 5. and more ...

Predictor for a Single Branch

General Form

1. Access
 - PC
2. Predict Output T/NT
3. Feedback T/NT

1-bit prediction

Predict Taken

Feedback
Branch History Table of 1-bit Predictor

BHT also Called Branch Prediction Buffer in textbook
- Can use only one 1-bit predictor, but accuracy is low
- Use a table of simple predictors, indexed by bits from PC
- Similar to direct mapped cache
- More entries, more cost, but less conflicts, higher accuracy
- BHT can contain complex predictors

1-bit BHT Weakness
- Example: in a loop, 1-bit BHT will cause 2 mispredictions
- Consider a loop of 9 iterations before exit:

```plaintext
for (...) {
    for (i=0; i<9; i++)
        a[i] = a[i] * 2.0;
}
```
- End of loop case, when it exits instead of loops as before
- First time through loop on next time through code, when it predicts exit instead of looping
- Only 80% accuracy even if loop 90% of the time

2-bit Saturating Counter

- Solution: 2-bit scheme where change prediction only if get misprediction twice: (Figure 3.7, p. 249)
- Blue: stop, not taken
- Gray: go, taken
- Adds hysteresis to decision making process

Branch Target Buffer

- Branch Target Buffer (BTB): Address of branch index to get prediction AND branch address (if taken)
- Note: must check for branch match now, since can't use wrong branch address
- Example: BTB combined with BHT

Return Addresses Prediction

- Register indirect branch hard to predict address
 - Many callers, one callee
 - Jump to multiple return addresses from a single address (no PC-target correlation)
- SPEC89 85% such branches for procedure return
- Since stack discipline for procedures, save return address in small buffer that acts like a stack: 8 to 16 entries has small miss rate

Correlating Branches

- Code example showing the potential

```plaintext
If (d==0) BNEZ R1, L1
d=1; DADDIU R1,R0,#1
If (d==1) L1: DADDIU R3,R1,#-1
    BNEZ R3, L2
    L2: ...
```
- Observation: if BNEZ1 is not taken, then BNEZ2 is taken
Correlating Branch Predictor

Idea: taken/not taken of recently executed branches is related to behavior of next branch (as well as the history of that branch behavior)

- Then behavior of recent branches selects between, say, 2 predictions of next branch, updating just that prediction
- (1,1) predictor: 1-bit global, 1-bit local

Correlating Branch Predictor

General form: (m, n) predictor

- m bits for global history, n bits for local history
- Records correlation between m+1 branches
- Simple implementation: global history can be stored in a shift register
- Example: (2,2) predictor, 2-bit global, 2-bit local

Accuracy of Different Schemes

(Figure 3.15, p. 206)

4096 Entries 2-bit BHT
Unlimited Entries 2-bit BHT
1024 Entries (2,2) BHT

Estimate Branch Penalty

EX: BHT correct rate is 95%, BTB hit rate is 95%

Average miss penalty is 15 cycles

How much is the branch penalty?

Accuracy of Return Address Predictor

© 2005 Springer Science+Business Media, LLC. All rights reserved.