Lecture 24: Power-efficient Designs

Dynamic and static power, processor power distribution, low power techniques in processor design, examples

Credits: Zhichun Zhu Thesis defense, HPCA’01 Low Power Tutorial, WRL Cacti Model

Importance of Low-power Designs

- Cost factor for high-end systems
- High-end systems
 - Cooling and package cost
 - > 40 W: $100
- Air-cooled techniques: reaching limits
- Reliability
- Desktop PCs consume around 10% power in US

- Usability of Portable systems:
 - Battery lifetime
- Restriction factor for high-performance server design
 - Power determines processor density

Processor Performance vs. Power Trends

Dynamic vs. Static Power

Dynamic: Charge/discharge capacitors when switching between 0 and 1
- Short-circuit currents on transitions

Static (Leakage)
- From sub-threshold currents

Sources of Power Consumption

- Dynamic (dominant) [Tutorial: HPCA-7]
 \[P_{\text{dynamic}} = \frac{1}{2} C \cdot V^2 \cdot A \cdot f \]

- Static (2~5%) [Butts: MICRO-33]
 \[P_{\text{static}} = N \cdot V \cdot k_{\text{design}} \cdot I_{\text{leak}} \]

C: capacitance, V: supply voltage, A: activity factor, f: clock rate
N: # transistors, k_{\text{design}}: design parameter, I_{\text{leak}}: leakage current

Importance of Low-power Architecture Designs

- Low power CMOS and logic designs alone can no longer solve all power problems.

\[P_{\text{dynamic}} = \frac{1}{2} C \cdot V^2 \cdot A \cdot f \]

\[V' = 0.7V \]
\[C' = 0.7 \times 2C \]
\[f' = 2f \]
\[P'_{\text{dynamic}} = 1.4 P_{\text{dynamic}} \]

Low-power Techniques
- Physical (CMOS) level
- Circuit level
- Logic level
- Architectural level
- OS level
- Compiler level
- Algorithm/application level

Power-aware Architecture Designs
- Utilize low-power circuit techniques
- Exploit application characteristics
- Play an important role in low-power designs
 - Pentium III 800 MHz processor
 [CoolChip'00]
 - Scaled from Pentium Pro: 90 watts
 - After architectural design and optimization: 22 watts.

Tradeoff between Performance and Power
- Objects for general-purpose system
 - Reduce power consumption without degrading performance
- Common solution
 - Access/activate resources only when necessary
- Question
 - When is necessary?

Metrics for Power-Performance Efficiency
- Performance (CPU time or Delay)
 \[D = I \cdot CPI \cdot \frac{1}{f} \]
- Power consumption (P)
- Energy consumption (E)
 \[E = P \cdot D \]

Processor Power Distribution Example (Alpha 21264)

Power Consumption
- Clock
- Issue
- Caches
- FP
- Int
- Mem
- I/O
- Others

Source: CoolChip Tutorial
Low Power Processor Design

- Reduce power consumption of processor core
 - Voltage/frequency scaling: reduce supply voltage and/or frequency when processor is idle
 - Clock gating: disable clocks to inactive components
 - Pipeline gating: reduce mis-speculated instruction execution
 - Pipeline balancing: adjust effective pipeline ways for available IPC
 - Efficient issue logic: cluster structure, adjust effective issue queue size, no matching for ready entries, reducing tag matching entries

Low Power Memory Design

- Reduce power consumption of memory components
 - Banked or hierarchical register file
 - Sub-banked cache
 - Sequential access or way prediction caches
 - Dynamically adjusting cache size
 - Decay cache for reducing static power
 - Low power DRAM with deep sleeping modes: four modes in Rambus

Pipeline Gating

- Mis-speculated instruction increase energy consumption, typically 16%-105% overhead
- Pipeline gating: stall fetching when confidence is low
- Prevent "bad" instructions from entering the pipeline: may reduce 38% of wrong inst

Set Associative Cache

- Power per access: 4T + 4D

Phased N-way Cache

- Power per access: 4T + 1D
 - But access time increases

Way-prediction N-way Cache

- Correct prediction: 1T + 1D
Low Power Server Design

- Low power considerations in supercomputing
 - Is high-performance processor the best choice?
 - IBM Blue Gene: 64K nodes with PowerPC 440 processors designed for low power
- Power management for high-performance servers
 - Meet performance with minimal active nodes

Power Evaluation Tools

- Processor
 - Wattch
 - Analytical
 - SimplePower
 - Analytical (e.g. cache)
 - Transition-sensitive (e.g. FU)
- Cache
 - CACTI
 - Analytical

Low Power Technique Summary

- Power is critical in processor design: cost and dependability
- Power distributions: clock, issue logic, cache, etc.
- Architectural approaches
 - Scale voltage, frequency, and/or pipeline width with required performance
 - Reduce mis-speculated execution, eliminate unnecessary cache accesses and data
 - Many others
- System approaches: high-performance by low power processors
 - Now low power is as important as performance