An ALU (arithmetic logic unit)

- Let's build an ALU to support the andi and ori instructions - we'll just build a 1 bit ALU, and use 32 of them

Possible Implementation (sum-of-products):

Review: The Multiplexor

- Selects one of the inputs to be the output, based on a control input

note: we call this a 2-input mux even though it has 3 inputs!
- Lets build our ALU using a MUX:

Different Implementations

- Not easy to decide the "best" way to build something
- Don't want too many inputs to a single gate
- Don't want to have to go through too many gates
- for our purposes, ease of comprehension is important
- Let's look at a 1-bit ALU for addition:

$c_{\text {out }}=a b+a c_{i n}+b c_{i n}$ sum $=a$ xor b xor $c_{i n}$
- How could we build a 1-bit ALU for add, and, and or?
- How could we build a 32-bit ALU?

Building a 32 bit ALU

What about subtraction $(a-b)$?

- Two's complement approach: just negate b and add.
- How do we negate?
- A very clever solution:

Tailoring the ALU to the MIPS

- Need to support the set-on-less-than instruction (slt)
- remember: slt is an arithmetic instruction
- produces a 1 if rs <rt and 0 otherwise
- use subtraction: (a-b) < 0 implies $a<b$
- Need to support test for equality (beq $\$ \mathbf{t 5}, \$ \mathrm{t} 6, \$ \mathrm{t} 7$)
- use subtraction: (a-b) $=0$ implies $\mathbf{a}=\mathbf{b}$

Supporting slt

- Can we figure out the idea?

Test for equality

- Notice control lines:
$000=$ and
$001=$ or
$010=$ add
$110=$ subtract
$111=$ slt
-Note: zero is a 1 when the result is zero.

Conclusion

- We can build an ALU to support the MIPS instruction set
- key idea: use multiplexor to select the output we want
- we can efficiently perform subtraction using two's complement
- we can replicate a 1-bit ALU to produce a 32-bit ALU
- Important points about hardware
- all of the gates are always working
- the speed of a gate is affected by the number of inputs to the gate
- the speed of a circuit is affected by the number of gates in series (on the "critical path" or the "deepest level of logic")
- Our primary focus: comprehension, however,
- Clever changes to organization can improve performance (similar to using better algorithms in software)
- we'll look at two examples for addition and multiplication

A 32-bit ALU

- A Ripple carry ALU
- Two bits decide operation
- Add/Sub
- AND
- OR
- LESS
- 1 bit decide add/sub operation
- A carry in bit
- Bit 31 generates overflow and set bit

Problem: ripple carry adder is slow

- Is a 32-bit ALU as fast as a 1-bit ALU?
- Is there more than one way to do addition?
- two extremes: ripple carry and sum-of-products

Can you see the ripple? How could you get rid of it?
$c_{1}=b_{0} c_{0}+a_{0} c_{0}+a_{0} b_{0}$
$c_{2}=b_{1} c_{1}+a_{1} c_{1}+a_{1} b_{1} \quad c_{2}=$
$c_{3}=b_{2} c_{2}+a_{2} c_{2}+a_{2} b_{2} \quad c_{3}=$
$c_{4}=b_{3} c_{3}+a_{3} c_{3}+a_{3} b_{3} \quad c_{4}=$
Not feasible! Why?

Carry-look-ahead adder

- An approach in-between our two extremes
- Motivation:
- If we didn't know the value of carry-in, what could we do?
- When would we always generate a carry? $\quad g_{i}=a_{i} b_{i}$
- When would we propagate the carry? $\quad p_{i}=a_{i}+b_{i}$
- Did we get rid of the ripple?

```
c
```

$c_{2}=g_{1}+p_{1} c_{1}$
$c_{3}=g_{2}+p_{2} c^{2}$
$c_{4}=g_{3}+p_{3} c_{3}$
$c_{2}=g_{1}+p_{1} g_{0}+p_{1} p_{0} c_{0}$
$c_{3}=g_{2}+p_{2} g_{1}+p_{2} p_{1} g_{0}+p_{2} p_{1} p_{0} c_{0}$
$c_{4}=g_{3}+p_{3} g_{2}+p_{3} p_{2} g_{1}+p_{3} p_{2} p_{1} g_{0}+p_{3} p_{2} p_{1} p_{0} c_{0}$

Feasible! Why?

A 4-bit carry look-ahead adder

Use principle to build bigger adders

Delays in carry look-ahead adders

- 4-Bit case
- Generation of g and $p: 1$ gate delay
- Generation of carries (and G and P): $\mathbf{2}$ more gate delay
- Generation of sum: 1 more gate delay
- 16-Bit case
- Generation of g and $\mathrm{p}: 1$ gate delay
- Generation of block G and P: 2 more gate delay
- Generation of block carries: 2 more gate delay
- Generation of bit carries: 2 more gate delay
- Generation of sum: 1 more gate delay
- 64-Bit case
- 12 gate delays

Multiplication: Implementation

Multiplication Example

Itera- tion	multi- plicand	Orignal algorithm	
	0010	Stitial values	Product
1	0010	$1: 0 \Rightarrow$ no operation	00000110
	0010	2: Shift right Product	00000110
2	0010	1a:1 \Rightarrow prod = Prod + Mcand	00100011
	0010	2: Shift right Product	00010001
3	0010	1a:1 \Rightarrow prod = Prod + Mcand	00110001
	0010	2: Shift right Product	00011000
4	0010	$1: 0 \Rightarrow$ no operation	00011000
	0010	2: Shift right Product	00001100

Booth's Encoding

- Numbers can be represented using three symbols, 1, 0, and -1
- Let us consider -1 in 8 bits
- One representation is 11111111
- Another possible one $0000000-1$
- Another example +14
- One representation is 00001110
- Another possible one 000100-10
- We do not explicitly store the sequence
- Look for transition from previous bit to next bit

$$
-0 \text { to } 0 \text { is } 0 ; 0 \text { to } 1 \text { is }-1 ; 1 \text { to } 1 \text { is } 0 \text {; and } 1 \text { to } 0 \text { is } 1
$$

- Multiplication by 1,0 , and -1 can be easily done
- Add all partial results to get the final answer

Using Booth's Encoding for Multiplication

- Convert a binary string in Booth's encoded string
- Multiply by two bits at a time
- For \mathbf{n} bit by $\mathbf{n - b i t}$ multiplication, $\mathbf{n} / 2$ partial product
- Partial products are signed and obtained by multiplying the multiplicand by $0,+1,-1,+2$, and -2 (all achieved by shift)
- Add partial products to obtain the final result
- Example, multiply 0111 (+7) by 1010 (-6)
- Booths encoding of 1010 is $\mathbf{- 1 + 1 - 1} 0$
- With 2-bit groupings, multiplication needs to be carried by -1 and -2
$\begin{array}{lllllllll}1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & \text { (multiplication by }-2 \text {) } \\ 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & \left.\quad \begin{array}{l}\text { (multiplication by }-1\end{array}\right)\end{array}$
$\begin{array}{lllllllll}1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & \text { (multiplication by }-1 \text { and shift by } \mathbf{2} \text { positions) }\end{array}$
- Add the two partial products to get 11010110 (-42) as result

