Pre-Treatment Technologies for Increasing the Biogas Potential of Agricultural Wastes

Tim Shepherd
CE 521
30 November 2006
Introduction of AD

- Widely Used in Municipal Systems
 - Fewer Applications in Agriculture

- Microbes Consume Substrate Producing
 - CH$_4$ and CO$_2$
 - Stabilizes and Reduces Solids
 - Conserves Nutrients
 - Produces Renewable Energy
 - Controls Odors
AD Limitations in Agriculture

• Compared to Traditional Manure Systems
 – High Capital Investment
 – Maintenance and Operation
 – Limited Economic Return
 – Safety Concerns

• Economical Solids Loading ~ 5%
 – Ag Waste Total Solids 2% - 10%
Pretreatment Technologies

- **Maceration**
 - Chopping, Grinding, Blending, etc.
 - Reduce Particle Size, Break Fibers

- **Chemical Treatment**
 - Addition of Caustics (NaOH, NH₄OH, H₂SO₄)
 - Destruction of Lignin Bonds

- **Liquefaction**
 - Forced Explosion of Cellular Structure
 - Disassociation of Fibers and Colloids
Pretreatment Technologies

- **Thermal Hydrolysis**
 - Heating: 100-200°C for 30-120 minutes
 - Disrupts Cells, Destroys Lignin Bonds

- **Sonication**
 - Low Frequency Ultrasound Waves
 - Cell Lysis, Solids Solubilization

- **Ozonation**
 - Oxidation of Organic Matter

- **Biological**
 - Aerobic Digestion
 - Cellulose and Hemicellulose Degrading Bacteria
Case Study 1
Bourgrier et al. 2006a

- Non-Newtonian Liquid
- Treatment Provides
 - Shift Towards Newtonian Fluids
 - Reduced Apparent Viscosity

- Increased Biogas Production
- Increased Production Rate
- Thermal and Sonication Provide Best Results
Case Study 2
Ardic and Taner 2005

Thermal vs. Chemical vs. Thermochemical

- Increases Solubility of Organics
 - All Treatments
- Reduced Particle Size
 - Thermal and Thermochemical
- Increased Biogas Production
 - Thermal
- Methanogenic Inhibition
 - High Dose Chemical Treatments
Case Study 3

Angelidaki and Ahring 2000

Maceration vs. Liquefaction vs. Chemical vs. Biological

<table>
<thead>
<tr>
<th>Treatment</th>
<th>CH$_4$ potential increase (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maceration 2 mm</td>
<td>16</td>
</tr>
<tr>
<td>Maceration < 0.35 mm</td>
<td>20</td>
</tr>
<tr>
<td>Decompression explosion</td>
<td>17</td>
</tr>
<tr>
<td>NaOH 20 g/kg VS</td>
<td>13</td>
</tr>
<tr>
<td>NaOH 40 g/kg VS</td>
<td>23</td>
</tr>
<tr>
<td>NH$_4$OH < 20 g/kg VS</td>
<td>0</td>
</tr>
<tr>
<td>NH$_4$OH 40 g/kg VS</td>
<td>23</td>
</tr>
<tr>
<td>NaOH:KOH:Ca(OH)$_2$ 40 g/kg VS</td>
<td>20</td>
</tr>
<tr>
<td>Hemicellulose degrading bacterium B4</td>
<td>30</td>
</tr>
</tbody>
</table>
Case Study 4
Valo et al. 2000; Bourgrier et al. 2006b

Chemical vs. Thermochemical
– Two Waste Sources
– Semi-Continuous System

<table>
<thead>
<tr>
<th>Sludge</th>
<th>Methane Yield, L/kgVS</th>
<th>130°C, KOH</th>
<th>150°C</th>
<th>170°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>128 +/- 5</td>
<td>220 +/- 4</td>
<td></td>
<td>228 +/- 5</td>
</tr>
<tr>
<td>2</td>
<td>145 +/- 5</td>
<td></td>
<td>238 +/- 4</td>
<td>256 +/- 7</td>
</tr>
</tbody>
</table>
Full Scale Applications

Municipal Systems Most Common

- **Prague → Maceration**
 - 7.5% Increased Biogas Production
 - Supports Energy Demand

- **UK, Sweden, USA, Australia → Sonication**
 - Improved Solids Destruction
 - Substantial Increase in Biogas Production
 - Enhanced Dewatering
 - Reduced Sludge Production
 - 2-Year Payback Period
Full Scale Applications
Muhler et al. 2004

Maceration vs. Sonication vs. Ozonation

• Economic Assessment
 – Increased Solubilization
 – Improved AD Performance
 – Economic Viability Dependant upon Sludge Disposal Costs
Agricultural Applicability

• Maceration
 – Simple System Operation
 – High Maintenance and Operating Costs

• Liquefaction
 – Complex System
 – High Capital Investment
 – Safety with High Pressure System
Agricultural Applicability

- **Chemical**
 - Simple Application
 - High Chemical Costs / Low Capital Cost
 - Safety Concerns with Storage and Handling of Caustics
- **Ozonation**
 - Simple Application
 - Moderate Operating and Capital Cost
 - Least Effective Method
Agricultural Applicability

• Thermal
 – Flexible System
 – Capital Costs are Minimal
 – Energy Economics are Critical

• Sonication
 – New Technology
 – High Capital Costs
Agricultural Applicability

• Biological
 – With Proper Management
 • Low Energy Consumption
 • Low Maintenance
 • Limited Capital Expenditures
 – Technological Advancements
 • Enhanced Performance and Reliability
 • Unrealized Potential
Conclusion

- Pretreatment Enhances AD
- Provides Benefits in Ag Systems
- Full Potential Realized with Economic Benefits
- Thermal, Sonication, and Biological are Most Feasible Pretreatment Systems
Questions?