Pre-Treatment Technologies for Increasing the Biogas Potential of Agricultural Wastes

Tim Shepherd CE 521 30 November 2006

> IOWA STATE UNIVERSITY Agricultural and Biosystems Engineering

Introduction of AD

- Widely Used in Municipal Systems

 Fewer Applications in Agriculture
- Microbes Consume Substrate Producing CH₄ and CO₂
 - Stabilizes and Reduces Solids
 - Conserves Nutrients
 - Produces Renewable Energy
 - Controls Odors

AD Limitations in Agriculture

- Compared to Traditional Manure Systems
 - High Capital Investment
 - Maintenance and Operation
 - Limited Economic Return
 - Safety Concerns
- Economical Solids Loading ~ 5%
 Ag Waste Total Solids 2% 10%

Pretreatment Technologies

Maceration

- Chopping, Grinding, Blending, ect.

- Reduce Particle Size, Break Fibers
- Chemical Treatment
 - Addition of Caustics (NaOH, NH_4OH , H_2SO_4)
 - Destruction of Lignin Bonds

Liquefaction

- Forced Explosion of Cellular Structure
- Disassociation of Fibers and Colloids

Pretreatment Technologies

Thermal Hydrolysis

- Heating: 100-200°C for 30-120 minutes
- Disrupts Cells, Destroys Lignin Bonds

Sonication

- Low Frequency Ultrasound Waves
- Cell Lysis, Solids Solubilization

Ozonation

- Oxidation of Organic Matter
- Biological
 - Aerobic Digestion
 - Cellulose and Hemicellulose Degrading Bacteria

Case Study 1

- Non-Newtonian Liquid
- Treatment Provides
 - Shift Towards Newtonian Fluids

25

 Reduced Apparent Viscosity

Case Study 2

Ardic and Taner 2005

Thermal vs. Chemical vs. Thermochemical

- Increases Solubility of Organics
 - All Treatments
- Reduced Particle Size
 - Thermal and Thermochemical
- Increased Biogas Production
 - Thermal
- Methanogenic Inhibition
 - High Dose Chemical Treatments

Angelidaki and Ahring 2000

Maceration vs. Liquefaction vs. Chemical vs. Biological

Treatment		CH ₄ potential increase (%)
Maceration	< 0.35 mm	20
Maceration	2 mm	16
Decompression explosion		17
NaOH	20 g/kg VS	13
NaOH	40 g/kg VS	23
NH₄OH	<20 g/kg VS	0
NH₄OH	40 g/kg VS	23
NaOH:KOH:Ca(OH) ₂	40 g/kg VS	20
Hemicellulose degrading bacterium B4		30

Case Study 4

Valo et al. 2000; Bourgrier et al. 2006b

Chemical vs. Thermochemical

- Two Waste Sources
- Semi-Continuous System

Methane Yield, L/kgVS					
Sludge	Raw	130ºC, KOH	150°C	170ºC	
1	128 +/- 5	220 +/- 4		228 +/- 5	
2	145 +/- 5		238 +/- 4	256 +/- 7	

Full Scale Applications

Municipal Systems Most Common

- Prague \rightarrow Maceration
 - 7.5% Increased Biogas Production
 - Supports Energy Demand
- UK, Sweden, USA, Australia → Sonication
 - Improved Solids Destruction
 - Substantial Increase in Biogas Production
 - Enhanced Dewatering
 - Reduced Sludge Production
 - 2-Year Payback Period

Full Scale Applications

Muhler et al. 2004

Maceration vs. Sonication vs. Ozonation

Economic Assessment

 Increased Solubilization
 Improved AD Performance
 Economic Viability Dependant upon Sludge Disposal Costs

Maceration

- Simple System Operation

- High Maintenance and Operating Costs

Liquefaction

- Complex System
- High Capital Investment
- Safety with High Pressure System

Chemical

- Simple Application
- High Chemical Costs / Low Capital Cost
- Safety Concerns with Storage and Handling of Caustics

Ozonation

- Simple Application
- Moderate Operating and Capital Cost
- Least Effective Method

Thermal

- Flexible System
- Capital Costs are Minimal
- Energy Economics are Critical
- Sonication
 - New Technology
 - High Capital Costs

Biological

- With Proper Management
 - Low Energy Consumption
 - Low Maintenance
 - Limited Capital Expenditures
- Technological Advancements
 - Enhanced Performance and Reliability
 - Unrealized Potential

Conclusion

- Pretreatment Enhances AD
- Provides Benefits in Ag Systems
- Full Potential Realized with Economic Benefits
- Thermal, Sonication, and Biological are Most Feasible Pretreatment Systems

Questions?