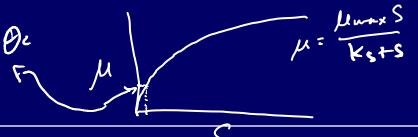


Modeling Suspended Growth Systems


- see Grady, Daigger & Lim

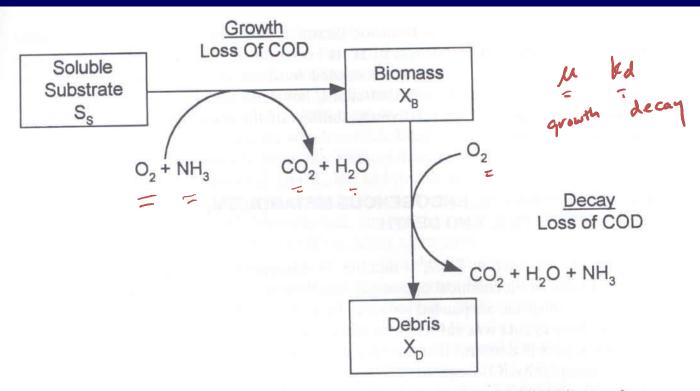
Environmental Biotechnology CE421/521 Tim Ellis (originally prepared by Dr. Eric Evans) October 25, 2007

Monod Equation and Unified Model

- Reactor performance as a function of SRT.
- Fails to account for:
 - Particulate removal rate
 - Anaerobic/anoxic conditions
 - Variable flow and loading
 - Biological nutrient removal

$$S = \frac{k_s(1+b\theta_c)}{\theta_c(\hat{\mu}-b)-1}$$

$$X = \frac{Y(S_0-S)}{1+b\theta_c} \frac{\theta_c}{\theta}$$
The series of the series of



International Association on Water Quality Activated Sludge Model 1 (IAWQ-ASM 1) TAUR → TVA

- □ In 1983, IAWQ appointed a task group to develop a model.
- □ In 1986, ASM 1 was completed.
- ASM 1 able to predict performance of soluble and particulate substrate removal, nitrification and denitrification under steady state and dynamic conditions.

Traditional vs. Lysis-regrowth

Figure 3.5 Schematic representation of the traditional approach to modeling biomass decay and loss of viability.

Traditional vs. Lysis-regrowth

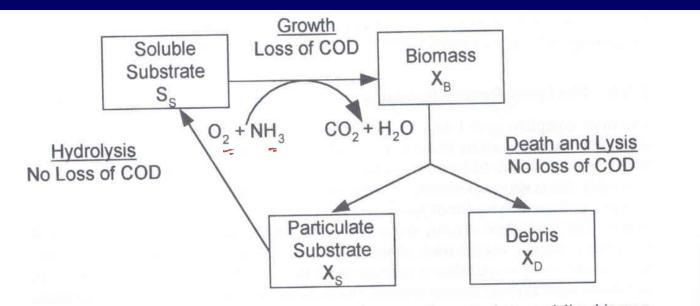


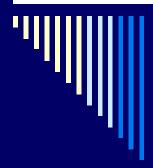
Figure 3.6 Schematic representation of the lysis:regrowth approach to modeling biomass decay and loss of viability.

ASM 1

- Tracks 13 individual components through eight separate processes.
- Assumes heterotrophic growth under anoxic conditions.
- Limited anaerobic activity.
- Uses lysis-regrowth approach

Table 6.1 Process Kinetics and Stoichiometry for Multiple Events in Suspended Growth Cultures as Presented by IAWQ Task Group on Mathematical

	odeling ^{16,17}						4 7	01	-	-	TR1			1	EINETICS
	Component ^a → i	1	2	3	4	5	6	7	8	9	10	11	12	13	
j	Process ↓	Xi	Xs	$X_{B,H}$	X _{B,A}	Χυ	Si	Ss	S _o ^b	S _{NO}	S _{NH}	S _{Ns}	X _{NS}	S _{alk}	Process rate, r _p , ML ⁻³ T ⁻¹
1	Aerobic growth of heterotrophs			1				$-\frac{1}{\mathbf{Y_{ii}}}$	$\frac{1-Y_{H}}{Y_{H}}$		- i _{N/XB}			- i _{N/XB} 14	$\hat{\mu}_{\text{H}} \left(\frac{S_{\text{S}}}{K_{\text{S}} + S_{\text{S}}} \right) \left(\frac{S_{\text{O}}}{K_{\text{O,H}} + S_{\text{O}}} \right) X_{\text{B,H}}$
2	Anoxic growth of heterotrophs			1				$-\;\frac{1}{Y_{_{\rm H}}}$		$\frac{1 - Y_H}{2.86 Y_H}$	— i _{м/хв}			$\frac{1 - Y_H}{14(2.86 \ Y_H)} - \frac{i_{NXB}}{14}$	$\begin{split} \hat{\mu}_{\text{H}} \left(& \frac{S_{\text{S}}}{K_{\text{S}} + S_{\text{S}}} \right) \left(\frac{K_{\text{O,H}}}{K_{\text{O,H}} + S_{\text{O}}} \right) \\ & \cdot \left(\frac{S_{\text{NO}}}{K_{\text{NO}} + S_{\text{NO}}} \right) \eta_{\text{g}} X_{\text{R,H}} \end{split}$
3	Aerobic growth of autotrophs				1				(4.57) Y_A	$\frac{1}{Y_A}$	$=i_{\text{N/XB}}-\frac{1}{Y_{\text{A}}}$			$-\;\frac{i_{\text{N/XB}}}{14}-\frac{1}{7Y_{\text{A}}}$	$\hat{\mu}_{\text{A}} \left(\frac{S_{\text{NH}}}{K_{\text{NH}} + S_{\text{NH}}} \right) \left(\frac{S_{\text{O}}}{K_{\text{O,A}} + S_{\text{O}}} \right) X_{\text{B,A}}$
4	Death and lysis of heterotrophs		1 - f' _p	-1		f' _p							$i_{N/XB} = f_D' i_{N/XD}$		$b_{t,M}X_{B,H}$
5	Death and lysis of autotrophs		1 - f' _D		-1	f_D^{\prime}							$i_{\text{\tiny N/XB}} = f_{\text{\tiny D}}' i_{\text{\tiny N/XD}}$		$b_{L,\Lambda}X_{B,\Lambda}$
6	Ammonification of soluble organic nitrogen										1	-1		$\frac{1}{14}$	k _a S _{NS} X _{B,H}
7	"Hydrolysis" of particulate organics		-1					1							$\begin{aligned} k_{h} & \frac{X_{S}/X_{B,H}}{K_{X} + (X_{S}/X_{B,H})} \left[\left(\frac{S_{O}}{K_{O,H} + S_{O}} \right) + \eta_{h} \left(\frac{K_{O,H}}{K_{O,H} + S_{O}} \right) \left(\frac{S_{NO}}{K_{NO} + S_{NO}} \right) \right] X_{B,H} \end{aligned}$
8	"Hydrolysis" of particulate organic nitrogen					D.V.						1	-1		$ + \eta_h \left(\overline{K_{O,II} + S_O} \right) \left(\overline{K_{NO} + S_{NO}} \right) \right] X_{B,II} $ $ r_7(X_{NS}/X_S) $
	served conversion rates, ML ⁻³ T ⁻¹						•		$r_i = \sum_{j=1}^{r}$	$\Psi_{ij}\mathbf{r}_{j}$					


^{*}All organic compounds (1-7) and oxygen (8) are expressed as COD; all nitrogenous components (9-12) are expressed as nitrogen.

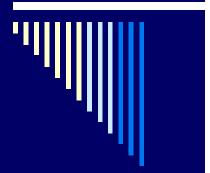
^bCoefficients must be multiplied by -1 to express as oxygen.

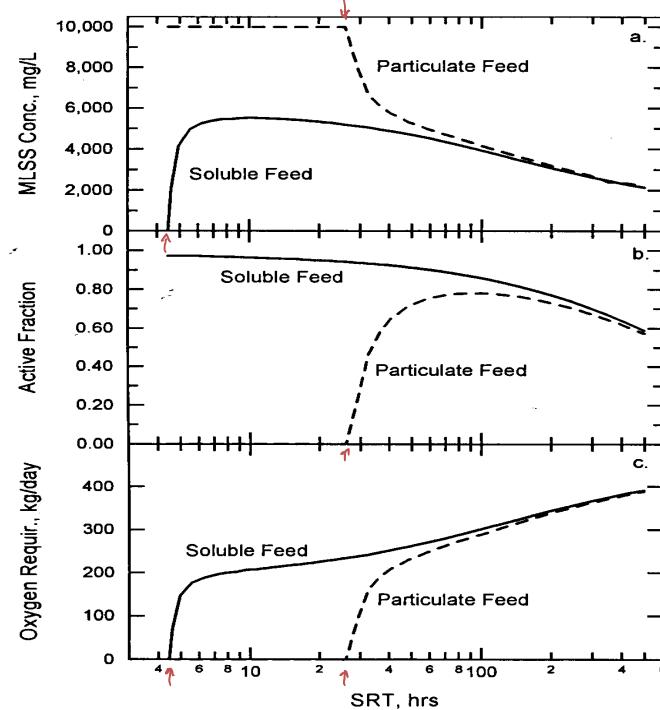
IAWQ – ASM 2

- In 1995, ASM 2 was released capable of tracking biological phosphorus flows.
- □ Now able to model enhanced biological phosphorus removal.

ASM 2

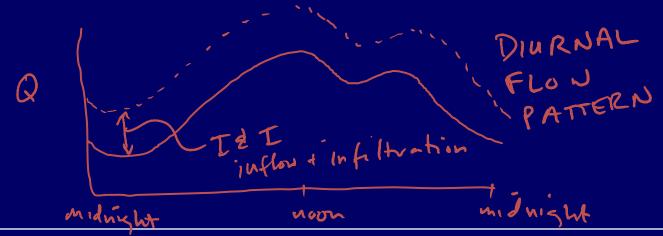
- □ Tracks 19 separate components through 19 processes.
- 22 stoichiometric coefficients and 42 kinetic parameters
- Ammonification and hydrolysis simplified to stoichiometric terms; i.e. rates implicit.
- Includes anaerobic fermentation, uptake of acetate, formation of PHB and PHAs, and release of soluble phosphate from hydrolysis of polyphosphate.
- Several assumptions made that constantly need revision as knowledge evolves.

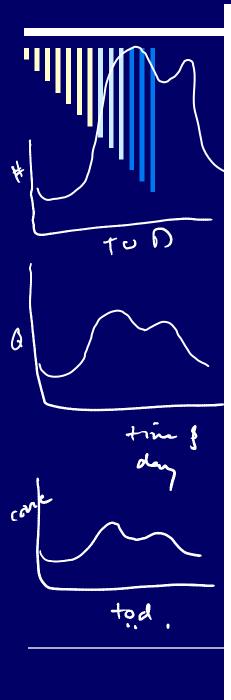

Activated Sludge Models

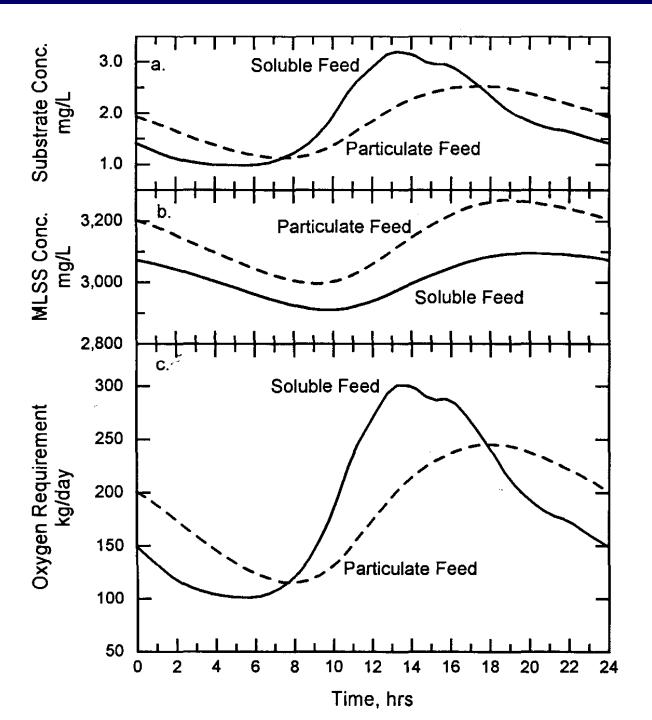

- Cannot solve analytically.
- Use computer algorithm based on numerical techniques
 - SSSP, Bidstrup and Grady (MS-DOS based, ASM 1)
 - GPS-X, Hydromantis, Inc.
 - BioWin, EnvironSim Associates Limited.
 - ASIM & AQUASIM, Swiss Federal Institute of Aquatic Science and Technology, EAWAG.
 - EFOR, DHI, Inc.
 - STOAT, WRc Group.
 - WEST, Hemmis N. V.
 - SIMBA, IFAK-System GmbH.
- ASM 2 integrated into software algorithm provides a powerful tool.

Steady-state performance – Particulate versus Soluble

- Particulate hydrolysis is a rate limiting step.
- A particulate feed requires a longer SRT to achieve treatment.
- Particulates compose all of MLSS at low HRTs and active fraction is washed out.

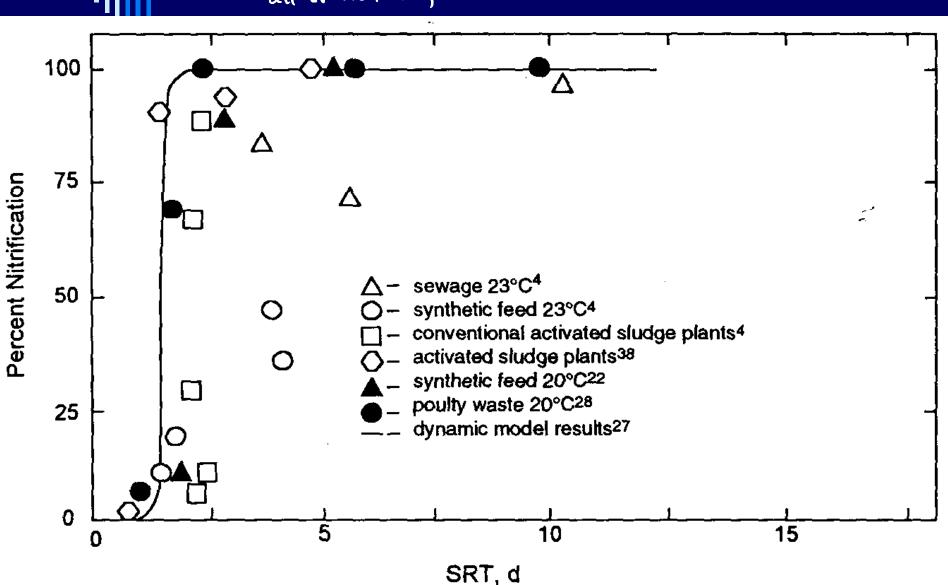




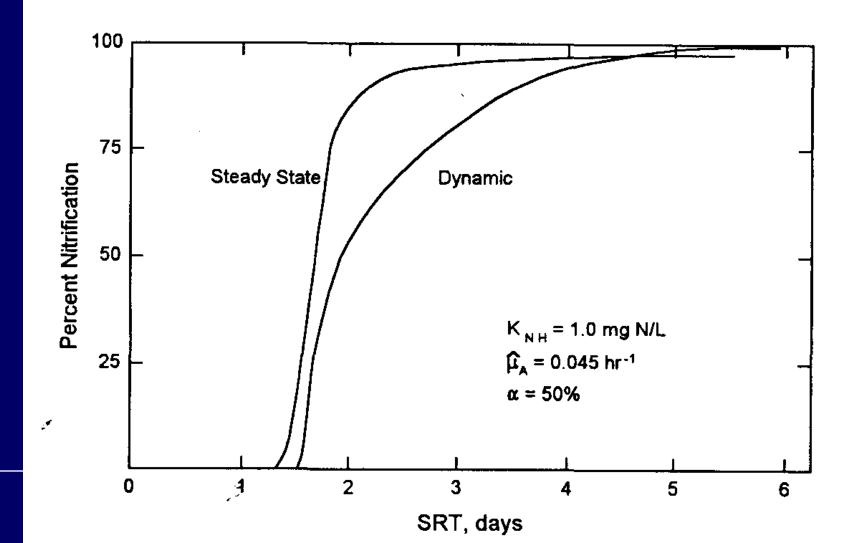


Dynamic performance – Particulate and Soluble

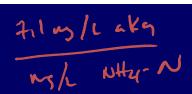
- Flow & substrate concentrations vary during diurnal pattern.
- Particulate and soluble feeds have different effects on performance.

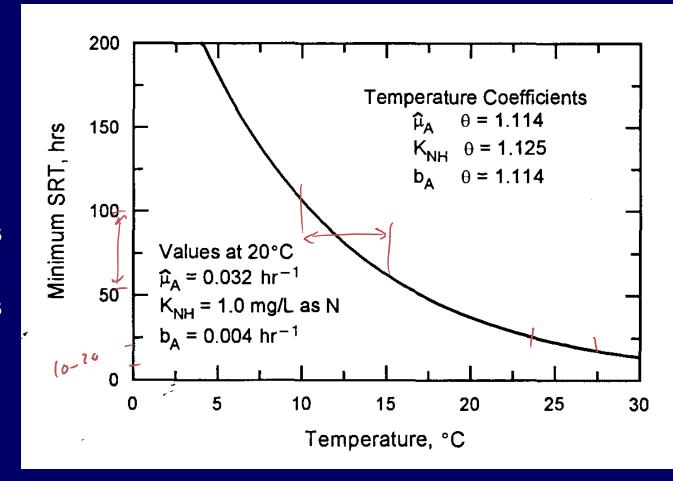


Nitrification – low μ_{max} and K_S

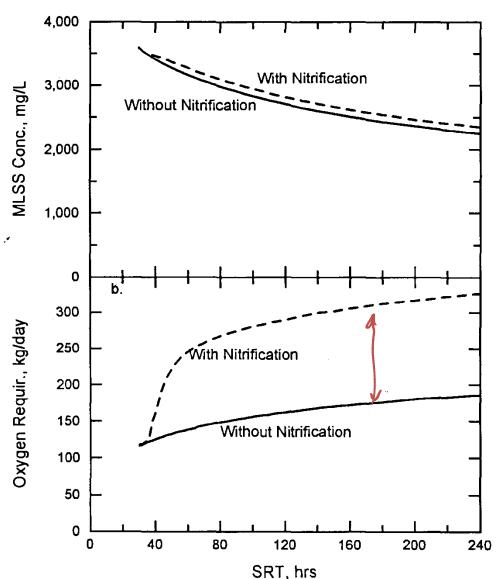


Diurnal flow has a negative leftect on nitrification

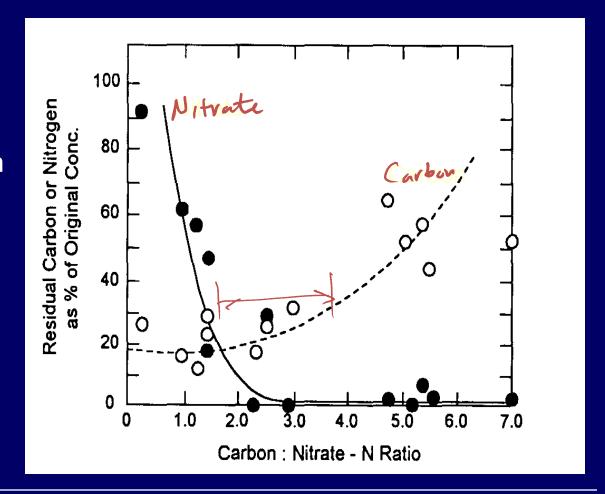


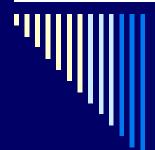


Nitrification

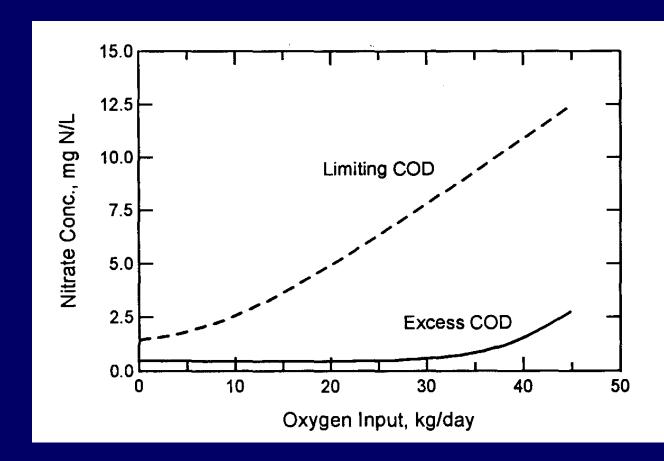

- Nitrifiers are affected by:
 - Temperature
 - Low oxygen concentrations
 - Inhibition by some organics

- Autotrophs are a small fraction of MLSS.
- Nitrification consumes large amount of oxygen.



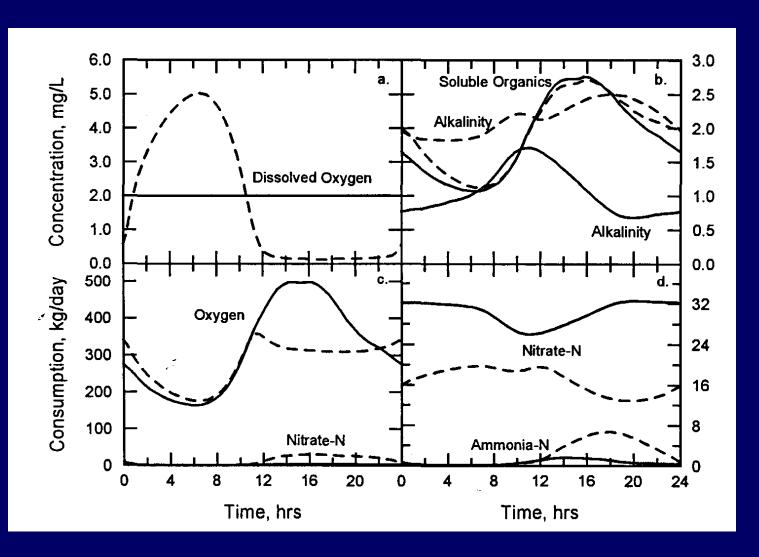


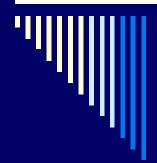
Denitrification


- Denitrification
 - Organics are electron donor
 - Nitrates are electron acceptor
- Optimum Carbon to Nitrate ratio based on balance between electron donor and acceptor.

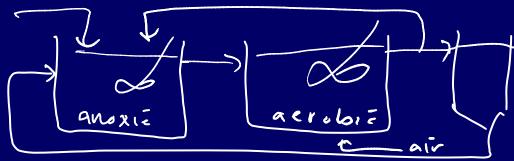
Denitrification

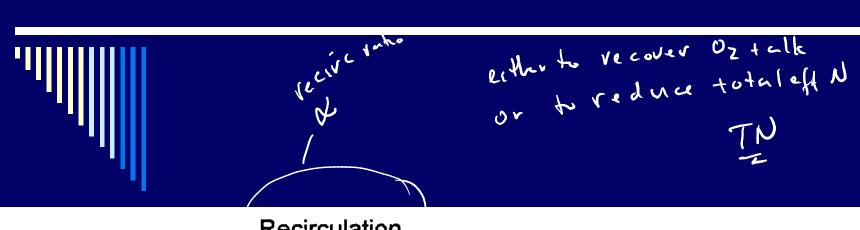
Oxygen is preferred electron acceptor...

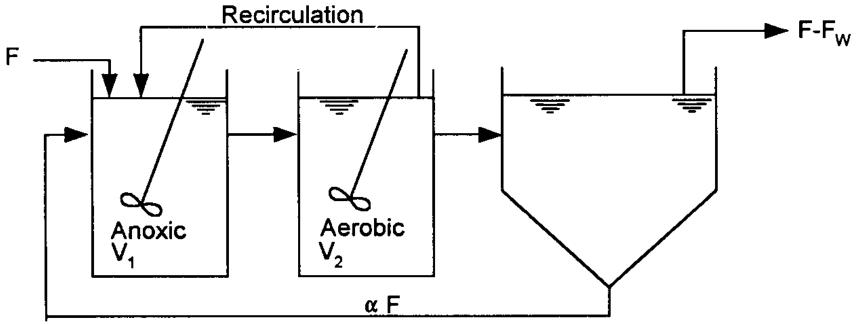



Diurnal flow with different aeration strategies

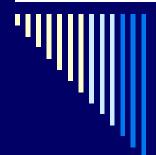
- □ Single CSTR may be set to:
 - Maintain a constant dissolved oxygen concentration in the tank
 - Constant oxygen flow into tank

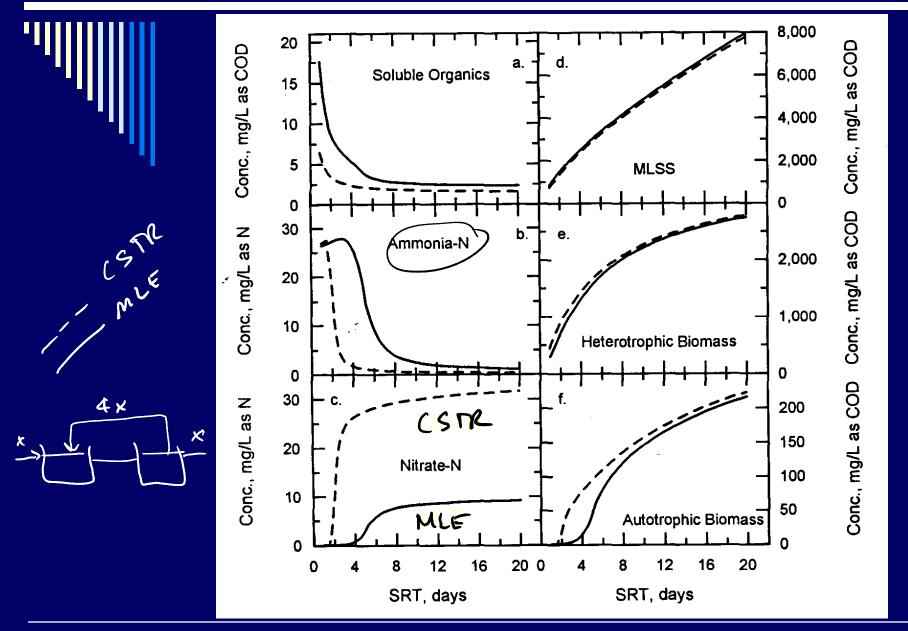

course surto





Modified Ludzack Ettinger

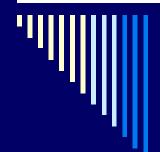

- Use an anoxic basin and an aerobic basin to select for denitrification after nitrification...
- Why denitrify?
- Where would you place anoxic selector in flow scheme?

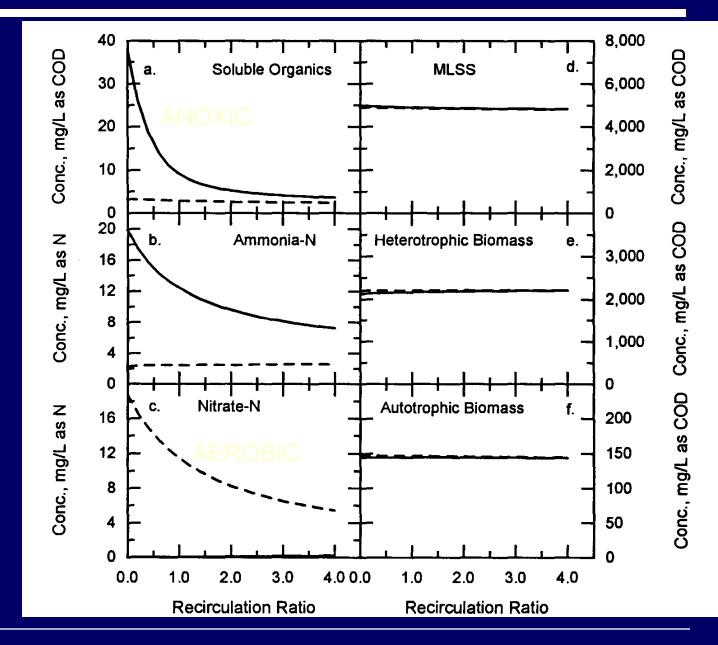

RAS MLE

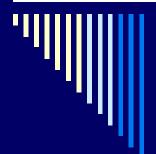
Effect of SRT on MLE

■ SRT is biomass in system divided by biomass wasted from system where system includes both aerobic and anoxic basins...

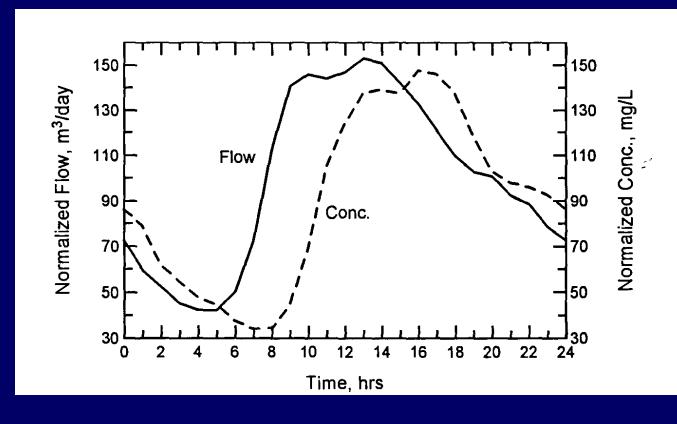
SNT: bromess in system

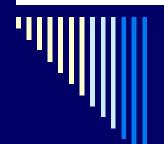



Dashed lines indicate performance of a single CSTR of the same volume as the anoxic and aerobic reactors.


MLE

- Recycle affects performance in MLE
- Greater recycle leads to:
 - Nitrate flow into anoxic reactor and thus higher consumption of nitrates and organics.
 - Dilution of ammonia in anoxic reactor.




Solid lines indicate the anoxic (first) reactor and the dashed indicate The second (aerobic) reactor.

Diurnal Flow

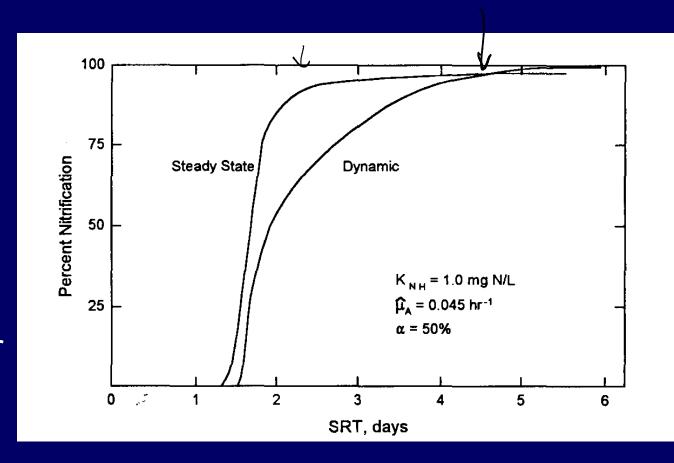
- Wastewater flow and strength reflect activity of population.
- Expect diurnal flow pattern.

Diurnal Flow

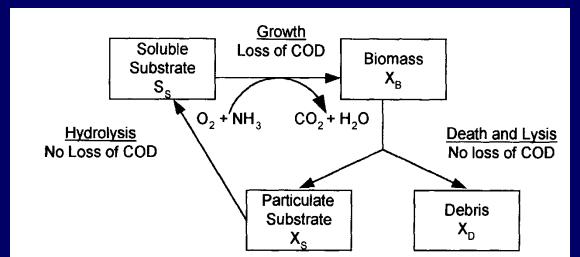
- Dynamic flow results in lower performance.
- Performance not solely a function of SRT.
- Also depends on biomass change as a result of changing input.

Steady-state equation

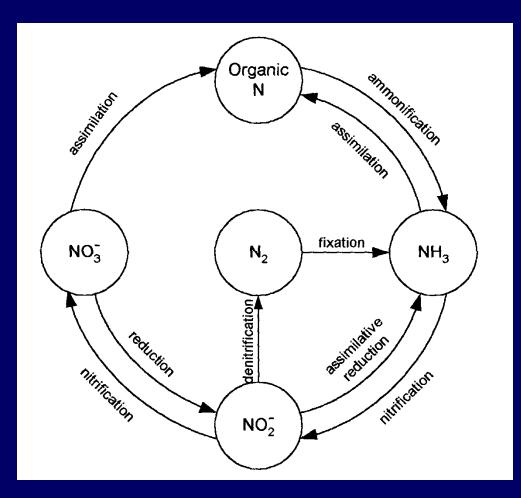
$$S = \frac{K_s(1+b_H\theta_c)}{\theta_c(\hat{\mu}_H - b_H) - 1}$$


$$S = \frac{K_{s}(1 + b_{H}\theta_{c} + \frac{\theta_{c}}{X}\frac{dX}{dt})}{\theta_{c}(\hat{\mu}_{H} - b_{H} - \frac{1}{X}\frac{dX}{dt}) - 1}$$

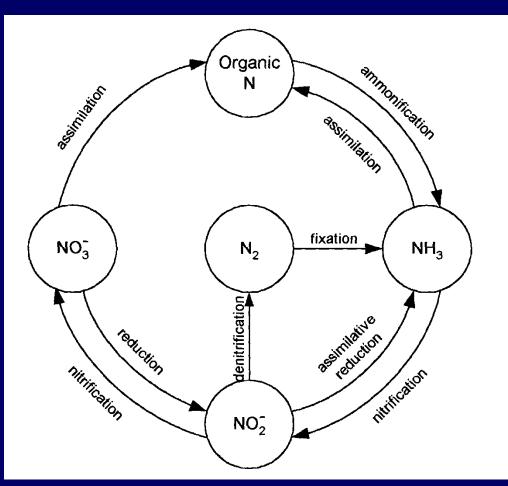
Dynamic equation


Diurnal Flow

- Recall effect of diurnal flow on flow weighted nitrification in CSTR.
- Must increase SRT to compensate for dynamic condition.

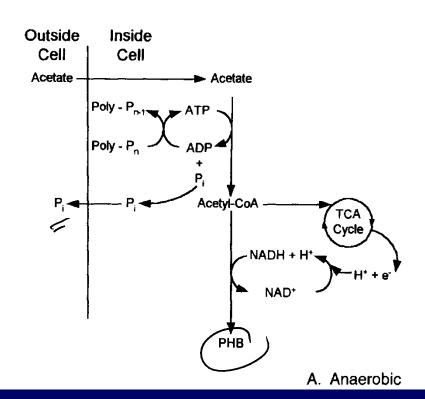


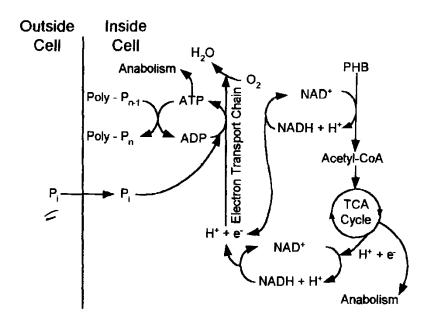
- Heterotrophs
 - Environment=Aerobic
- Electron Donor
 - Organics
- Electron Acceptor
 - Oxygen
- Benefits
 - Removes organics that suffocate or are toxic to the environment
- Drawbacks
 - Consumes Oxygen (Costs money)
 - Produces large amounts of sludge



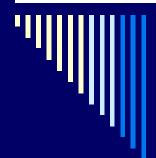
- Heterotrophs
 - Environment=Anoxic
- Electron Donor
 - Organics
- Electron Acceptor
 - Nitrates
- Benefits
 - Removes nitrates
 - Reduces oxygen use
 - Generates alkalinity
- Drawbacks
 - Anoxic environment may be difficult to create

- Autotrophs
 - Environment = Aerobic
- Electron Donor
 - Ammonia
- Electron Acceptor
 - Oxygen
- Benefits
 - Removes ammonia
- Drawbacks
 - High oxygen consumption
 - Reduces alkalinity

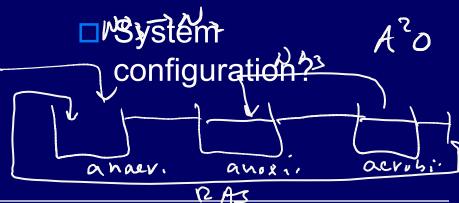

- □ Phosphate Accumulating Organisms
 - Environment=Anaerobic/Aerobic
- Benefits
 - Removes Phosphorus
- Drawbacks
 - Complex life cycle
 - Requires numerous recycle lines
 - Phosphorus rich sludge



EBPR

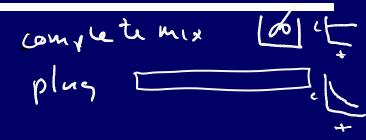

charging

 $\gamma_{\rm b}$


B. Aerobic

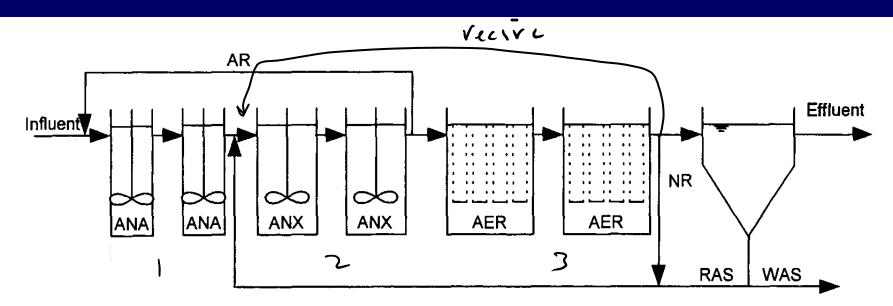
Virginia Initiative Plant

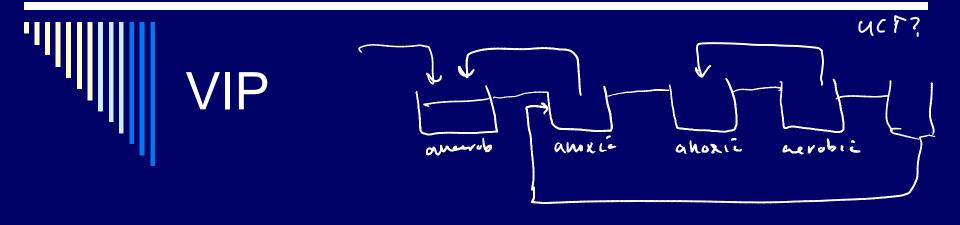
- System to remove:
 - Organics
 - Nitrogen
 - Ammonia
 - Nitrates
 - Phosphorus



Virginia Initiative Plant

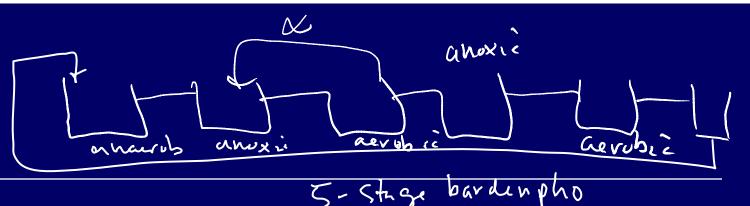
- System configuration:
 - Anaerobic
 - Anoxic
 - Aerobic
 - Recirculation
 - RAS to Anoxic
 - MLR from Aerobic to RAS
 - MLR from Anoxic to Anaerobic



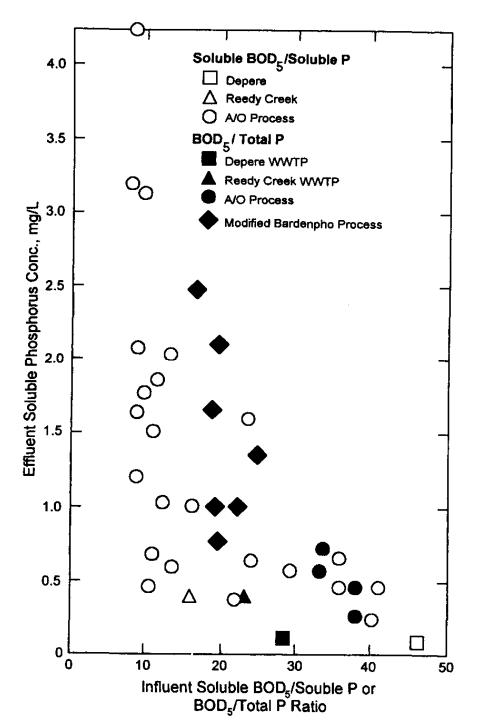

Figure 11.13 VIP process.

- Benefits?
- □ Drawbacks?

 Table 11.2
 Biological Nutrient Removal Process Comparison


Process	Benefits	Drawbacks
Nitrogen Removal		
MLE	 Good nitrogen removal Moderate reactor volume Alkalinity recovery Good solids settleability Reduced oxygen requirement Simple control 	High level of nitrogen removal not generally possible
Four-stage Bardenpho	 Excellent nitrogen removal Alkalinity recovery Good solids settleability Reduced oxygen requirement Simple control 	Large reactor volume
Denitrification in aerobic reactor	 Alkalinity recovery Reduced energy requirement Easily applied to some existing facilities 	 Large reactor volume Complex control May result in poor sludge settleability
Separate stage suspended growth denitrification Phosphorus Removal	 Excellent nitrogen removal Minimum reactor volume 	 Requires upstream nitrification Supplemental electron donor required High energy requirement
A/O™	Minimum reactor volumeGood phosphorus removalGood solids settleabilitySimple operation	 Phosphorus removal adversely impacted if nitrification occurs
Phostrip [®]	Excellent phosphorus removal	 Complex operation Phosphorus removal adversely impacted if nitrification occurs
Nitrogen and Phosphorus Removal		
A ² /O ™	 Good nitrogen removal Moderate reactor volume Alkalinity recovery Good solids settleability Reduced oxygen requirement Simple control 	 High level of nitrogen removal not generally possible Moderate phosphorus removal
VIP and UCT	 Good nitrogen removal Good phosphorus removal Moderate reactor volume Alkalinity recovery Good solids settleability Reduced oxygen requirement Simple control 	 High level of nitrogen removal not generally possible An additional MLR step is required
Five-stage Bardenpho	 Excellent nitrogen removal Alkalinity recovery Good solids settleability Reduced oxygen requirement 	 Large reactor volumes Moderate to poor phosphorus removal

VIP and UCT


- Good nitrogen removal
- Good phosphorus removal
- Moderate reactor volume
- Alkalinity recovery
- Good solids settleability
- Reduced oxygen requirement
- Simple control

- High level of nitrogen removal not generally possible
- An additional MLR step is required

- Important consideration:
 - BOD₅/Total P ratio

Virginia Initiative Plant

- BOD₅/ΔP ratio needed for VIP Process?
 - 15-20 mg BOD₅/mg P

Table 11.4 BOD₅ and COD to Phosphorus Removal Ratios for Various BPR Processes

Type of BPR process	BOD ₅ /ΔP ratio (mg BOD ₅ /mg P)	COD/ΔP ratio (mg COD/mg P)
High efficiency (e.g., A/O™ without nitrification, VIP, UCT)	15-20	26-34
Moderate efficiency (e.g., A/O [™] and A ² /O [™] with nitrification)	20-25	34–43
Low efficiency (e.g., Bardenpho)	>25	>43