Environmental Biotechnology

CE421/521 Tim Ellis October 25, 2007

INDICATOR MICROORGANISMS

- Need for indicator organisms
 - Not possible to test for every pathogen
 - Use indicator that will be easy to test routinely
 - Early warning if there is a problem
 - Used in regulations
 - Water treatment and distribution
 - Wastewater treatment discharges (NPDES permit)
 - When to close beaches and lakes for recreational uses
 - Beaches closed when FC is over 300 colony forming units per 100 mL or when monthly average is over 140 CFU per 100 mL

INDICATOR MICROORGANISMS

- Use of indicator organisms dates back to 1914 when U.S. Public Health Service adopted the coliform test as an indication of fecal contamination
- Ideal indicator should have the following characteristics:
 - 1. Found in intestines of warm blooded animals
 - 2. Should be present when p a thogen are present and absent when pathogens are absent
 - 3. Present in greater number than pathogens
 - 4. As resistant as (or more resistant than) pathogens

_, inexpensive method

- 5. It shouldn't multiply in the environment
 - 6. Easily detectable by rapid
 - 7. Non-pathogenic itself

Total Coliforms

- Characteristics:
 - · Aerobic and facultative
 - gram n<u>e gative</u>
 - non s_po∢ < ____ forming
 - r_od____shaped

anaerobic organisms

- ferment l_actose_____ within 48 h at 35°C as evidenced by gas production
- includes E. coli, Enterobacter, Kleibsiella, and Citrobacter
- high levels in human and animal feces <u>so</u> per capita per day

Fecal Coliforms

- all coliforms that can ferment lactose at 44.5°C as evidenced by g <u>as</u> production
- includes groups such as *E. coli* and *Kleibsiella*
- presence is an indication of human and animal contamination
- human and animal contamination cannot be differentiated
- s <u>urvival</u> pattern is similar to bacterial pathogens
- much l <u>ess</u> resistant to disinfection than protozoan pathogens

Fecal Streptococci

- includes groups such as *Streptococcus faecalis, S. bovis, S. equinus,* and *Kleibsiella*
- inhabit intestines
 of warm blooded animals and humans
- Historically fecal coliform/fecal strep r<u>ation</u> serves as useful indicator of origin of contamination
 - ratios greater than 4 indicate h uman origin
 - ratios less than _____ indicate animal contamination
 - In-between ratios indicate a mixture human and animal contamination
 - Currently there are probably better indicators of human contamination (pharmaceuticals and personal care products)
 —> microminients

Clostridium perfringens

- Anaerobe
- forms s_<u>pores</u> that are resistant to disinfection and environmental stress
- possibly too resistant to be useful as an indicator
- good for tracking contamination in marine
 environments

Bacteriophages

- Similar to enteric viruses
 and found in
 higher numbers
- Suggested as water quality indicators in e stravics, seawater, recreational waters, and drinking water
- C<u>olighages</u> exhibit best correlation to enteric

viruses

Heterotrophic Plate Count (HPC)

- Measure of aerobic and facultative anaerobic bacteria that derive their carbon and energy from organic compounds
- No known effects of high HPC on h uman health
- HPC in drinking water ranges from less than CFU/mL to more than _____ CFU/mL
- Good indicator of pathogens in reclaimed wastewater

BULKING and FOAMING

 Sludge settling can be the most important operational problem in an activated sludge plant

Ciliates

Nematodes

Rotifers

FILAMENTOUS BULKING

- Measurement of sludge settleability
- Sludge volume index SVI
- · Measure of s etting
- Measured in a <u>g</u> raduated
 30 min of settling mL
- Units of mL/g
- A d esirable

150

SVI is in the range of 75-

9

characteristics

cylinder after

11 - clear super. natant

Bulking and Foaming

amind	Name of Problem	Cause of Problem	Effect of Problem	
	Dispersed growth	Microorganisms do not form flocs but are dispersed, forming only small clumps or single sells.	Turbid effluent. No zone settling of sludge.	
	Slime (jelly); Viscous bulking; (also possibly has been referred to as nonfilamentous resulting in bulking)	Microorganisms are present in large amounts of extracellular slime.	Reduced settling and compac- tion rates. Virtually no solids separation, in severe cases in overflow sludge blanket from secondary clarifier.	
	Pin-floc (or pinpoint floc)	Small, compact, weak, roughly speherical flocs are formed, the larger of which settle rapidly. Smaller aggregates settle slowly.	Low sludge volume index (SVI) and a cloudy, turbid effluent.	
	Bulking	Filamentous organisms extend from flocs into the bulk solu- tion and interfere with com- paction and settling of activated sludge.	High SVI—very clear supernatant.	
	Rising sludge (blanket rising)	Denitrification in secondary clarifier releases poorly soluble N_2 gas, which attaches to acti- vated sludge flocs and floats them to the secondary clarifier surface.	A scum of activated sludge forms on the surface of secondary clarifier.	
	Foaming/scum formation	Caused by (1) nondegradable surfactants and by (2) by the presence of <i>Nocardia</i> sp. and sometimes by (3) the presence <i>Microthrix parvicella</i> .	Foams float large amounts acti- vated sludge solids to surface of treatment units. Foam accu- mulate and putrefy. Solids can overflow into secondary effluent or overflow tank free-board onto walkways.	

TABLE 9.1. Causes and Effects of Activated Sludge Separation Problems

Adapted from Jenkins et al. (1984)

Filamentous Bulking

FILAMENTOUS BULKING

Kinetic Selection

(Chodoba et al.

TABLE 9.2.Comparison of Physiological Characteristics of Floc-Formersand Filamentous Organisms

	Bacteria 🗸			
Characteristic	Floc-Formers	Filamentous		
Maximum substrate uptake rate	High	Low		
Maximum specific growth rate	High	Low		
Endogenous decay rate	High	Low		
Decrease in specific growth rate from low substrate concentration	Significant	Moderate		
Resistance to starvation	Low	High		
Decrease in specific growth rate from low DO	Significant	Moderate		
Potential to sorb organics when excess is available	High	Low		
Ability to use nitrate as an electron acceptor	Yes	No		
Exhibits luxury uptake of phosphorus	Yes	No		

CSTR

lon F/M

Ж

Tow um \$Ks

L.1

5

٩

low F/M

food

11

micro

From Sykes (1989).

Types of Filaments

- filament shape
- size and shape within filament
- branching
- motility (e.g. *Beggiatoa* move by gliding
- presence of s heath
- presence of epiphytic b<u>acteria</u> on filament surface
- filament size and d same ter
- <presence of granules</pre>

Isolation of Filaments

- microscopic analysis
- fluorescentantibody techniques
- RNA chemotaxonomy
 (<u>g</u> e n <
 probes

Predominant Filaments

TABLE 9.3.Filamentous Organisms Predominant in U.S. BulkingActivated Sludges

Rank	Filamentous Organism	Percentage of Treatment Plants with Bulking Sludge Where Filament was Observed to Be Dominant ^a
1	Nocardia spp.	31
2	Type 1701	29
3	Type 021N	19
4	Type 0041	16
5	Thiothrix spp.	12
6	Sphaerotilus natans	12
7	Microthrix parvicella	10
8	Type 0092	9
9	Haliscomenobacter hydrossis	9
10	Type 0675	7
11	Type 0803	6
12	Nostocoida limicola	6
13	Type 1851	6
14	Type 0961	4
15	Type 0581	3
16	Beggiatoa spp.	<1
17	Fungi	<1
18	Type 0914	<1
	All others	<1

^aPercentage of 525 samples from 270 treatment plants with bulking problems. From Jenkins and Richard (1985).

Jenkins & Daisser

CAUSES

- Waste composition
 - high carbohydrate
 - volatile acids
 - readily <u>degradable</u>

substrates

Causes

- Substrate Concentration
 - $l _ ow _ s _ ub = trate _$ concentrations favor filaments due to their low K_S values
- Sludge Loading (Food to Microorganism Ratio)

MCRT	1.9	2.2	2.5	3.0	4.0	5.0	8.0	20
F/M	0.8	0.7	0.6	0.5	0.4	0.3	0.2	0.1
Type 1863		••••••						
Type 1701							6	
S. natans								
Thiothrix				-				
Type 021N							· · ·	→
Nocardia							****	
Туре 0041								
Type 0675						$\sum_{i=1}^{n}$		
M. parvicella								
Type 1851								
Type 0092								

croorganisms in activated sludge. From Jenkins (1992). (Courtesy of Pergamon Press.)

Photos of bulking organisms

Thiothrix spp.

S. natans (1000X)

Microthrix parvicella

Nocardia Foam (200X)

Гуре 1701

Гуре 021N

Гуре 0041N

Causes

- pH
 - I <u>o</u> J pH tends to favor filaments
- Sulfide
 - sulfide tends to encourage growth of sulfur
 fulaments
 such as
 - Thiothrix
 - Beggiatoa
 - 021N
- D.O.
 - *Sphaerotilus natans* K_s for oxygen is 0.01

DO 22.0

• K_S for oxygen for floc formers is 0.15

BULKING CONTROL

FOAMING IN ACTIVATED SLUDGE

- Types of activated sludge foams:
 - <u>surface</u> <u>active</u> <u>compounds</u> (surfactants)
 - d eter gents
 - s_cum (e.g., as a result of denitrification)
 - actinomycetes f o am

Foam Nuisance

• a esthetic

and safety hazard

digesters

(e.g., slippery walkways)

- increased levels of organic
 Compounds in effluent
- foaming in a naerobic
- nuisance organisms
- opportunistic p_athogens (e.g., *Nocardia asteroides*)

Foam Microbiology

- A ctinomy cetes is the most predominant foam causing organism
- N<u>ocardia</u> is a predominant member of this classification (e.g., *Gordona amarae*, formerly *Nocardia amarae*, *N. asteroides*, *N. pinensis*, and *Rhodococcus*).
- Gordona amarae and N. pinensis are usual suspects
- foaming is problematic when *Nocardia* concentration exceeds <u>26</u> mg *Nocardia* per g VSS

Mechanisms of Foam Production

- Gas bubles from aeration or denitrification assist in flotation
- h<u>ydrophobic</u> nature of cell wall assist in their transport to air-water interface
- <u>b</u> is surfactants produced by microorganisms accelerate foaming
- foaming is exacerbated by:
 - long SRTs (i.e., >9 d)
 - w arm temperatures (i.e., >18°C)
 - wastewaters with high f <u>sts</u>, o<u>il</u>, and <u>g rease</u> (FOG)

FOAM CONTROL

Figure 1. Foaming in two Australian activated sludge plants. Plant on right is an oxidation ditch with foam covering the dividing wall.

