CE 326 Principles of Environmental Engineering Water Chemistry Calculations

A water sample was analyzed and was found to have the following constituents:

Ca ⁺² , mg/L	135	HCO_3^- , mg/L	340
Mg ⁺² , mg/L	36	SO_4^{-2} , mg/L	122
Na ⁺ , mg/L	11.6	Cl ⁻ , mg/L	56
K ⁺ , mg/L	4.2	CO_3^{-2} , mg/L	1.8
Fe ⁺² , mg/L	9.6		
Mn ⁺² , mg/L	0.8	Temperature	25°C

- 1. Calculate each of the concentrations as mg/L as $CaCO_3$.
- 2. Calculate the hydrogen ion concentration:
 - a. as moles/L.
 - b. as mg/L.
 - c. as mg/L as $CaCO_3$.
 - d. as pH.
- 3. Calculate the hydroxide ion concentration:
 - a. as moles/L.
 - b. as mg/L.
 - c. as mg/L as $CaCO_3$.
 - d. as pOH.
- 4. Calculate the concentration of CO_2 as mg/L as $CaCO_3$ (use the equilibrium equations for the carbonate system and assume that H_2CO_3 concentration is equal to the CO_2 concentration).
- 5. Calculate the alkalinity (exactly).
- 6. Calculate the total, carbonate, and non-carbonate hardness of the water (include contributions made by iron and manganese).
- 7. How many mL of $0.02N H_2SO_4$ would be required to neutralize the bicarbonate alkalinity in a 50 mL sample?
- 8. Draw a bar chart for the water (see pages 238-239 for an example).
- 9. Based on the solubility product for calcium carbonate, how much calcium (mg/L as CaCO₃) should be soluble in this water? Is the water under-saturated or over-saturated with respect to calcium?
- 10. Based on the solubility product for magnesium hydroxide, how much magnesium $(mg/L as CaCO_3)$ should be soluble in this water? Is the water under-saturated or over-saturated with respect to magnesium?