A. **Absorbent** Tower (Packed Bed, Spray Tower, Wet Scrubber)
- **Dissolution** of the pollutant gas to the surface of the liquid
- **Dissolution** across the gas/liquid interface (dissolution)
- **Dissolution** of the dissolved gas away from the interface into the liquid:
 \[P = H C_i \]
 where: \(P \) = equilibrium partial pressure of gas, kPa, \(H \) = Henry's law constant, kPa·m³/g
 and \(C_i \) = concentration of pollutant gas in liquid phase, g/m³
- want to maximize gas liquid contact by maximizing surface area
- efficiency will be limited by the solubility of the pollutant

B. **Baghouse**
- same principle as the home \(v \) **Bags**
- bags are cleaned periodically as the \(d \) **Dirt** across the bag becomes excessive (approximately every 2 hours)
 - cleaned by mechanical \(r \) **Ribs** (used for shake-deflate design)
 - cleaned by \(h \) **Airjets** (used for pulse jet design)
- must be a \(d \) **Dust** gas stream
- potential \(f \) **Fire** hazard
- bag "\(r \) **Rags**" with time - develops a fine mat which helps to screen out particles
- for \(p \) **Flue Gas** removal, or used in conjunction with F **Flue Gas** D **Dust** applications

C. **Cyclone** Separator
- used for particulates larger than \(\mu \) **Micrometer**
- gas stream is accelerated through a \(s \) **Sidewalls** \(m \) **Motor**, centrifugal force moves heavier particles out and down
- as the \(d \) **Diameter** of the cyclone is reduced, the efficiency increases (as does the pressure drop)
- use of \(m \) **Multiple** tubes in parallel (multiclones) improves efficiency

D. **Adsorption** Bed
- surface \(p \) **Porosity** or \(c \) **Chemisorption** bond with the surface
- adsorbents: activated \(c \) **Carbon**, activated \(a \) **Alumina**, silica gel, and others
- 1 ounce of activated carbon has a surface area of \(\mu \) **Micrometer** acres
- bed must be \(r \) **Rinsed** prior to breakthrough

E. **Electrostatic Precipitator (ESP)**
- \(w \) **Wiring** in \(t \) **Tape** or wire and \(p \) **Piping** configurations
- wet or dry, wet cleaned by \(w \) **Washing**, dry by rapping, can be cleaned while in service
- \(c \) **Copper** wire imparts an electrical charge (neg), particles are attracted to charged (pos) collecting plates
- high \(p \) **Pressure** removal efficiencies possible

F. **Venturi Scrubber**
- velocity of gas is \(a \) **Accelerated** by a factor of four in the throat section where nozzles inject water or solution
- high velocity causes a \(a \) **Aerosol** of liquid
- pressure drop following the \(t \) **Throat** section creates a lot of turbulence resulting in good intermixing
- requires \(s \) **Separator** (e.g., cyclone) following venturi to collect particles and liquid

G. **Thermal Incineration**