CE 326 Principles of Environmental Engineering

Spring 2008 – Lecture Notes _

ACID RAIN

What is acid rain?

- More accurate term may be acid d
- Occurs in two forms
 - < w_____ deposition (acidic rain, fog, and snow)
 - < d_____ deposition (acidic gases and particles)
- $\begin{array}{ccc} Principal c _ & are SO_X and NO_X \\ About _ & of SO_X and _ & of NO_X comes from power \end{array}$ plants (most are coal burning)

How do we measure?

- pH of "natural" rain water is _____ $(pK_{a1} H_2CO_3 \text{ is } 6.35)$
- m by two networks, both supported by EPA
 - < The National Atmospheric Deposition Program measures w deposition, and its Web site (http://nadp.sws.uiuc.edu/) features maps of pH
 - < The Clean Air Status and Trends Network (CASTNET) measures d deposition (http://www.epa.gov/castnet/)

Effects of acid rain:

damage to forests and soils, fish and other living things, materials, and human health.

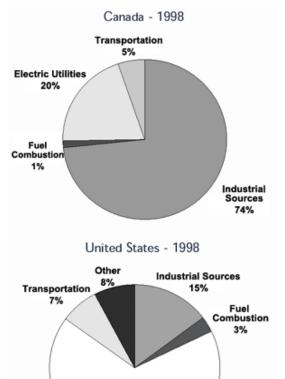
< acidification of l and s

In a National Surface Water Survey (NSWS)

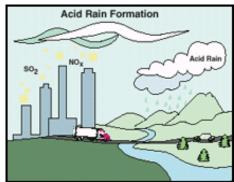
- effects of acidic deposition in over 1,000 lakes larger than 10 acres and in thousands of miles of streams believed to be sensitive to а

acid rain caused acidity in _____ percent of the acidic lakes
acid rain caused acidity in about _____ percent of the acidic streams

- U.S. regions containing many of the s _____w_____ sensitive to acidification include:


- the Adirondacks and Catskill Mountains in New York state,
- the mid-Appalachian highlands along the e c
- the upper M_____, and mountainous areas of the Western United States.

- In areas like the Northeastern United States, where s buffering capacity is poor, some lakes now have a pH value of less than


- One of the most acidic is Little Echo Pond in Franklin, NY with a pH of

- also a problem in lakes smaller than 10 acres that were not included in the NSWS (may increase the number up to f - fold).

- < approximately percent of sensitive lakes in the Adirondacks are at risk of e acidification (brief periods of low pH)
- low b______ streams: ______ of the streams in the Mid-Atlantic Coastal Plain are < acidic, in the New Jersey Pine Barrens, over _____ percent of the streams are acidic (highest rate of acidic streams in the nation), and over of the streams in the Mid-Atlantic Highlands (mid-Appalachia) are acidic, primarily due to acidic deposition.
- < Canadian government has estimated that lakes in eastern Canada are acidic.

Affects Fish and Aquatic Species

- < acid rain causes a c_____ of effects that harm or k_____ individual fish, reduce fish p_____ numbers, e_____ fish species, and decrease b
- < increased a _____ levels cause chronic stress that may not kill individual fish, but leads to lower body weight and smaller size and makes fish less able to compete for food and habitat.
- < generally, the y_____ of most species are more sensitive to environmental conditions than adults. At pH 5, most fish e_____ cannot hatch. At lower pH levels, some adult fish die.

	PH 6.5	eH 6 .0	PH 5.5	PH 5.0	PH 4.5	PH 4.0
TROUT						
BASS						
PERCH						
FROGS						
SALAMANDERS						
CLAMS						
CRAYFISH						
SNAILS						
MAYFLY						

Tree and Forest Damage

< damage of trees at high e_____ (for example, red spruce trees above 2,000 feet) and many sensitive forest soils.

Water Quality Impacts

< n_____ impacts on water quality due to eutrophication (o_____ depletion, a_____ blooms, d_____ in the health of fish and shellfish, loss of s_____ beds and c_____ reefs, and ecological changes in food webs): 10-45 percent of the nitrogen produced by various human activities that reaches e______ and coastal e______ is transported and deposited via the atmosphere. _____% of nitrogen in the Chesapeake Bay comes from atmospheric deposition.</p>

Materials and Building Decay

- < a______ the decay of building materials and paints, including irreplaceable buildings, statues, and sculptures that are part of our nation's cultural heritage.
- < acid rain can s_____ automotive coatings
- < Acid rain and the dry deposition of acidic particles contribute to the
 - c_____ of metals (such as bronze) and the deterioration of paint and
 - s_____ (such as marble and limestone).
- < some car manufacturers use acid-resistant paints, at an average cost of
 - \$_____ for each new vehicle (\$61 m total/y)

Affects visibility (as in photochemical smog from NO_X)

< Sulfate particles account for _____ percent of the visibility reduction in the eastern part of the United States

Acid Rain Reductions

- < EPA's Acid Rain Program caps SO₂ emissions from power plants at ______million tons/yr
- < 1990 Acid Rain Program under the Clean Air Act set goal to achieve reductions of _____ million tons of sulfur dioxide (SO₂) and _____ million tons of nitrogen oxides (NO_x).
- When fully implemented by the year 2010, the public health benefits of the Acid Rain Program are estimated to be valued at \$_____ billion annually, due to decreased m_____, h____ admissions, and emergency room visits. (for more details see: http://www.epa.gov/airmarkets/progress/arpreport/acidrainprogress.pdf)

Air Quality Concentrations 1981–00 50% decrease 1991–00 37% decrease 1999–00 4% decrease Emissions 1981–00 27% decrease 1991–00 21% increase 1999–00 6% increase

Worth Noting: SO2 concentrations have been reduced by over 50% over the past 20 years (1982-2001) and approximately 35% over the more recent 10-year period (1992-2001) nationwide. Reductions in SO2 concentrations since 1990 are due, in large part, to controls implemented under EPA's Acid Rain Program beginning in 1995.