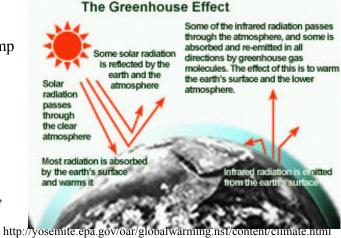
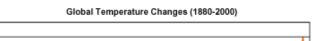
Greenhouse Effect

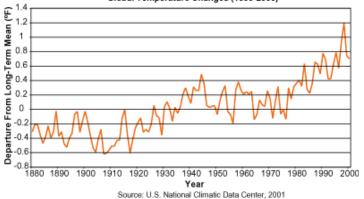
Greenhouse effect: n_____ effect of the gases in earth's atmosphere to trap incident solar radiation, earth is an average of EC warmer than if no greenhouse effect (average earth temp would be -____ EC instead of current EC)

Global warming: t that the accumulation of specific gaseous compounds is causing an uncontrollable increase in the earth's temperature with potentially devastating g effects

What is known:


- naturally occurring greenhouse gases include w vapor, carbon dioxide, methane, nitrous oxide, and ozone
- concentrations are increasing due to a ٠ sources
- water vapor is the most a greenhouse gas, but its concentrations are closely related to global temperatures and are relatively constant


• p of high concentrations of CO_2 in past have been accompanied by high temperatures at the Earth's surface, and periods of low carbon dioxide had relatively low surface temperatures.


- sea level has risen inches over the past century ٠
- global mean surface temperatures have increased - EC since the late 19th century
- Greenhouse gases have long lifetimes, ranging from _ years for methane to about ______ for carbon dioxide to ______ years for nitrous oxide. Anthropogenic increases in these gases will influence the earth's climate for many centuries. The climate system has high i , primarily due to the long time scales of ocean dynamical processes.
- S particles that form from sulfur dioxide emitted primarily by the burning of coal contribute to local cooling although the magnitude is uncertain.
- Decreases of ozone in the lower stratosphere have contributed to c effects in that region.

What we "think" will happen:

- the stratosphere will continue to c as CO₂ concentrations r . Ozone depletion will add to the cooling.
- water vapor in the lower troposphere (0-3 km) will increase about _____% for every 1°C of warming. ٠ Relative humidities will stay approximately the same.
- The warming of the last c_____ is consistent with model projections of global warming due to CO_2 modified by the regional cooling effect of sulfate particles.
- d______ of CO₂ over pre-industrial levels (likely to occur in the later half of the 21st century unless • emissions are significantly reduced) is projected to lead to a global warming of 1.5 to 4.5°C (2 - 8°F).
- by 2100 we can expect temperature increase of °C to °C.
- Sea-level rise is most likely to be (± 25) cm by year 2100 with continued rise beyond that time highly likely. Continued high (quadrupled) CO_2 could lead to \pm m rise in sea level.
- Global mean precipitation will increase at $(\pm 0.5)\%$ per 1°C of warming.

