Air Pollution

Seven Main Air Pollutants of Concern:

- 1. Р
- S_____Oxides (SO_x) 2.
- 3.
- 4.
- O_____ N_____Oxides (NO_x) Carbon M_____ (CO and other 5. hyrdrocarbons)
- Volatile O Compounds (VOCs) L (mercury, other inorganic metals, radon) 6.
- 7.

Particulates:

- released d_____ into the air
 largely a result of s_____ sources
 a nearly ubiquitous u_____ pollutant.

"Although particulate levels in North America and Western Europe rarely exceed 50 micrograms of particulate matter per cubic meter ($\mu\mu g/m^3$) of air, levels in many Central and Eastern European cities and in many developing nations are much higher, often exceeding 100 µg/m³ (http://www.wri.org/wr-98-99/urbanair.htm)."

Size of Particulates:

 $-PM_{2.5-100}$: 2.5 to 100 µ in diameter, usually comprise

s_____ and d_____t from industrial processes, agriculture, c_____, and road traffic, p and other natural sources.

- $-PM_{25}$: particles less than 2.5 μ in diameter generally come from combustion of f_____ fuels.
 - vehicle exhaust s_____, which is often coated with various chemical contaminants
 - fine sulfate and nitrate a ______ that form when SO₂ and nitrogen oxides condense in the atmosphere.

- largest source of fine particles is c -fired power plants, but auto and diesel

e are also prime contributors, especially along busy transportation corridors.

Health Effects:

- s_____ particulates most damaging (PM_{2.5})
- PM_{2.5} aggravate existing h_____ and lung diseases
 changes the body's defenses against i______ materials, and damages l______ tissue.
- e_____ children and those with chronic lung or heart disease are most sensitive
- lung impairment can persist for 2-3 weeks after e_____ to high levels of PM_{2.5}
- c carried by particulates can also be toxic

National Ambient Air Quality Standards (NAAQS)

Criteria Pollutants	Standard Type	Avg. Time	Conc.	Health Risks and Concerns	Anthropogenic Sources	Natural Sources
Carbon monoxide	Primary	8 h 1 h	9 ppm 35 ppm	carboxy-hemoglobin (blood)	incomplete combustion from mobile and stationary sources	intermediate in breakdown of methane by hydroxyl radicals (OH·)
Hydrocarbons (measured as CH_4)	Primary	3 h	240 ppb	photochemical smog	incomplete combustion from mobile and stationary sources	see graph
Lead	Primary	24 h 3 month	18 ppb 6 ppb	CNS	leaded gasoline (obsolete?), smelters and refineries	volcanic activity and soils
Nitrogen dioxide	Primary	annual 1 h	53 ppb 250 ppb	health risks, visibility (NO ₂ has a brown color)	high temperature combustion	bacterial processes in soil release nitrous oxide N ₂ O
Ozone	Primary	1 h 8 h	120 ppb 80 ppb	eye irritation, breathing difficulties	formed in nitrogen oxide photolytic cycle (NO_X + sunlight)	
Sulfur dioxide	Primary	annual 24 h	30 ppb 140 ppb	respiratory disease	sulfur in fuel	sulfur released in biological processes
Sulfur dioxide	Secondary	3 h	500 ppb	plant damage, material damage		
Total suspended particulates (TSP)	Primary	annual 24 h	75 μg/m ³ 150 μg/m ³	visibility and respiratory effects	combustion of fossil fuels and industrial activity	soil, sea salt, sand, forest fires, volcanoes
Particulates (PM ₁₀)	Primary	annual 24 h	50 μg/m ³ 365 μg/m ³	visibility and respiratory effects		
Particulates (PM _{2.5})	Primary	24 h	65 μg/m ³	visibility and respiratory effects		

Sulfur Oxides (SO_x, mainly SO₂)

- emitted largely from burning c , high-sulfur
- o____, and d_____ fuel.
- usually found in association with p

SO2 is the p for fine sulfate particles (separating _ the health effects of these two pollutants is difficult)

- SO₂ and particulates make up a major portion of the pollutant l_____ in many cities, acting both separately and in c to damage health.

- concentrations are higher by a factor of in a number of cities in Eastern Europe, Asia, and South America, where residential or industrial coal use is still prevalent and diesel traffic is heavy

major component of a _____ r ____

Health Effects:

SO₂ affects people q_____, usually _ within the first few minutes of e

SO₂ exposure can lead to the kind of a health effects typical of particulate pollution.

- Exposure is linked to an increase in

h_____ and deaths from respiratory and cardiovascular causes, especially among a_____ and those with preexisting r_____ diseases

- severity of these effects increases with rising SO₂ levels, and e_____ enhances the severity by increasing the volume of SO₂ inhaled and allowing SO₂ to penetrate deeper into the respiratory t

- Asthmatics may experience w_____ and other symptoms at much lower SO₂ levels than those without asthma.

When o______ is also present, asthmatics become even more sensitive to SO₂ indicating the potential for s effects among pollutants

Ozone

- major component of p_____smog formed when N_____ from fuel combustion
- react with V_____ s_____ and heat stimulate ozone formation, peak levels occur in the S _____
- w in cities in Europe, North America, and Japan as auto and industrial emissions have increased. Many cities in _____ countries also suffer from d

high ozone levels

- powerful o_____, can react with nearly any biological tissue.

carbon monoxide poisoning

Volatile Organic Compounds (VOCs)

- contribute to o generation
- many are subject to NESHAPS (benzene from gasoline vapors)
- significant i ______ emissions (e.g., perchloroethylene from d______
- cleaners)
- many are c_____ or suspected carcinogens

1982-01:

1992-01:

0% change

6% increase