DISINFECTION

	DISHTEC	11011
History of d	isinfection	
• J	S	and the
Broad Street	pump in 1854	
• he was ab	le to show that	59 of the 77
c	victims	used the pump or
Broad Street		
There was	a w	in

nobody at this workhouse got cholera. This particular workhouse had its own w_____. The cause of contamination turned out to be the d_____ of an infected person that was within three feet of the well.

the vicinity where cholera was endemic but

Disinfection of water supplies by

c began in Chicago and	
	on of
Jersey in 1908, within 2 years chlorinatio	
w s was practiced	d in
N.Y., Montreal, Milwaukee, Cleveland,	
Nashville, Baltimore, and Cincinnati. By	y 1918
over 1000 treating more than	bgo
were chlorinating their water supplies.	

Theory of Disinfection:

Chick's Law: $\frac{dN}{dt} = -kN$

rate, k, is a function of c_____ and t___ (i.e., CT) and type of organism

Typical disinfectants:

Chlorine:

$$Cl_2 + H_2O - HOC1 + Cl^-$$

Chloramines

$$NH_2C1 + HOC1$$
 $NHCl_2 + H_2O$

$$NHCl_2 + HOCl NCl_3 + H_2O$$

Ozonation

- strong o______, but no residual
 no THM f______, but other (non-chlorinated) DBPs possible
- often used as a p_____ disinfectant

Chlorine Dioxide

- strong oxidant, but not a powerful as O
- dose limited to 1.0 mg/L due to health concerns of chlorite and c_____
- residual is not long l

UltraViolet Light

- uses thin layer of water and mercury vapor arc l_____ emitting UV in the range of 0.2 to 0.29 micron
- depth of light p_____ limited to 50 80 mm
- powerful, but no residual

ADSORPTION PROCESSES

- takes advantage of physical/chemical bond of pollutant with adsorbent (typically g______ activated carbon or p_____ activated carbon)
 one ounce of GAC has a surface area of
- one ounce of GAC has a surface area of acres
- good process for removal of THMs, DBPs, SOCs, VOCs
- PAC dose is typically ____ mg/L can be as high as ____ mg/L
- GAC can be used instead of a in dual media filters, called filter adsorbers
 must replace GAC every years

