CE 326 Principles of Environmental Engineering Water Chemistry Calculations - Part 2 due March 3, 2008

A water sample was analyzed and was found to have the following constituents (same analysis as for part 1 of the homework):

Ca ⁺² , mg/L	135	HCO_3^- , mg/L	340
Mg ⁺² , mg/L	36	SO ₄ ⁻² , mg/L	122
Na ⁺ , mg/L	11.6	Cl ⁻ , mg/L	56
K ⁺ , mg/L	4.2	CO_{3}^{-2} , mg/L	1.8
Fe ⁺² , mg/L	9.6		
Mn ⁺² , mg/L	0.8	Temperature	25°C

- 1. Calculate the alkalinity (exactly).
- 2. Calculate the total, carbonate, and non-carbonate hardness of the water (include contributions made by iron and manganese).
- 3. How many mL of $0.02N H_2SO_4$ would be required to neutralize the bicarbonate alkalinity in a 50 mL sample?
- 4. Draw a bar chart for the water (see pages 238-239 for an example).
- 5. Based on the solubility product for calcium carbonate, how much calcium (mg/L as CaCO₃) should be soluble in this water? Is the water under-saturated or over-saturated with respect to calcium?
- 6. Based on the solubility product for magnesium hydroxide, how much magnesium (mg/L as $CaCO_3$) should be soluble in this water? Is the water under-saturated or over-saturated with respect to magnesium?