CE 326 Principles of Environmental Engineering
 Water Chemistry Calculations - Part 2
 due March 3, 2008

A water sample was analyzed and was found to have the following constituents (same analysis as for part 1 of the homework):

$\mathrm{Ca}^{+2}, \mathrm{mg} / \mathrm{L}$	135	$\mathrm{HCO}_{3}{ }^{-}, \mathrm{mg} / \mathrm{L}$	340
$\mathrm{Mg}^{+2}, \mathrm{mg} / \mathrm{L}$	36	$\mathrm{SO}_{4}^{-2}, \mathrm{mg} / \mathrm{L}$	122
$\mathrm{Na}^{+}, \mathrm{mg} / \mathrm{L}$	11.6	$\mathrm{Cl}^{-}, \mathrm{mg} / \mathrm{L}$	56
$\mathrm{~K}^{+}, \mathrm{mg} / \mathrm{L}$	4.2	$\mathrm{CO}_{3}^{-2}, \mathrm{mg} / \mathrm{L}$	1.8
$\mathrm{Fe}^{+2}, \mathrm{mg} / \mathrm{L}$	9.6		
$\mathrm{Mn}^{+2}, \mathrm{mg} / \mathrm{L}$	0.8	Temperature	$25^{\circ} \mathrm{C}$

1. Calculate the alkalinity (exactly).
2. Calculate the total, carbonate, and non-carbonate hardness of the water (include contributions made by iron and manganese).
3. How many mL of $0.02 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$ would be required to neutralize the bicarbonate alkalinity in a 50 mL sample?
4. Draw a bar chart for the water (see pages 238-239 for an example).
5. Based on the solubility product for calcium carbonate, how much calcium (mg / L as CaCO_{3}) should be soluble in this water? Is the water under-saturated or over-saturated with respect to calcium?
6. Based on the solubility product for magnesium hydroxide, how much magnesium (mg / L as CaCO_{3}) should be soluble in this water? Is the water under-saturated or over-saturated with respect to magnesium?
