Biological Wastewater Treatment

CE 326 Principles of Environmental Engineering
Department of Civil, Construction and Environmental Engineering
Iowa State University
Tim Ellis, Ph.D., P.E.
March 30, 2009
Announcements

• Wednesday lab
 – In 2nd floor classroom (230 & 250 TEB)
• Chapter 6 practice problems (to review in class on Friday):
 – 6:18
 – 6:26
• Wednesday - BOD & TSS lab due
• Friday - Ames UPoF write-up
Activated Sludge

Monod

\[\mu = \frac{\mu_{\text{max}} S}{K_S + S} \]

- \(\mu \): specific growth rate, \(\text{h}^{-1} \)
- \(\mu_{\text{max}} \): maximum specific growth rate, \(\text{h}^{-1} \)
- \(K_S \): half-saturation coefficient, \(\text{mg/L as BOD}_5 \)
- \(S \): substrate concentration, \(\text{mg/L as BOD}_5 \)

Minimize effluent \(\text{BOD}_5 \)
\[\begin{align*}
Q, X_0, S_0 & \quad \text{influent, recycled} \\
Qr, X_r, S & \quad \text{waste flow rates, m}^3/\text{d} \\
V & \quad \text{volume of aeration basin, m}^3 \\
X_0, X, X_e, X_r & \quad \text{biomass concentrations in influent, aeration basin, effluent & recycle, mg/L as VSS} \\
S_0, S & \quad \text{influent & effluent substrate conc. BOD, mg/L}
\end{align*} \]
Biomass mass balance:

\[\text{in} - \text{out} + \text{generation} = 0 \quad \text{at steady state} \quad x_w = x_r \]

\[QX_0 + A \left(\mu X - kd X \right) = (Q - Q_w)X_e + Q_wX_w \]

\(QX_0 \) = in + generation

\(A \) = out

\(V \) = volume of generation basin

\(\mu = \frac{m_{max} S}{K_S + S} \) = specific growth rate

\(kd \) = decay coefficient, \(h^{-1} \)

\[QX_0 + A \left(\frac{m_{max} S X}{K_S + S} - kd X \right) = (Q - Q_w)X_e + Q_wX_w \]

\(m_{max} \) = maximum growth rate

\(K_S \) = half-saturation constant

\(S \) = substrate concentration

\(X \) = biomass concentration
Substrate Mass balance

\[Q S_0 - H \left(\frac{V_{max} \cdot S \cdot X}{(k_S + S) \cdot Y} \right) = (Q - Q_w)S + Q_w S \]

\(Y = \) yield coefficient, mg VSS formed/mg BODs consumed

3 simplifying assumptions

1. Influent and effluent biomass concentration is negligible.
2. Aeration basin is a perfect CSTR (continuous stirred tank reactor).
3. All reactions occur in aeration basin.
Biomass:

\[\frac{M_{\text{max}} S}{K_s + S} = \frac{Q_w X_w}{V X} + 1_d \]

\[S = \frac{K_s}{\Theta_c} \left(1 + 1_d \Theta_c \right) \]

\[\Theta = \text{hydraulic retention time, h} \]

\[\Theta_c = \text{solids retention time, h} \]

Substrate:

\[\frac{M_{\text{max}} S}{K_s + S} = \frac{Q Y}{V X} (S_o - S) \]

\[\Theta = \frac{V}{Q} \]

\[\Theta_c = \frac{V X}{Q_w X_w} \text{ - mass of solids in system} \]

\[X = \frac{\Theta_c Y (S_o - S)}{\Theta (1 + 1_d \Theta_c)} \]
Ex. Effluent permit of 20 mg/l BOD\(_5\) and 20 mg/l SS

\[S_0 = 250 \text{ mg/l BOD}_5 \]

\[\mu_{max} = 0.15 \text{ h}^{-1} \]

\[K_s = 75 \text{ mg/l} \]

\[h_d = 0.004 \text{ h}^{-1} \]

\[Y = 0.5 \text{ mg VSS/mg BOD}_5 \]

\[\text{BOD}_5 \text{ of SS} = 0.65 \]

\[S = \frac{K_s(1 + h_d \Theta_c)}{\Theta_c(\mu_{max} - K_d) - 1} \]

\[T = \frac{K_s + S}{S(\mu_{max} - K_d) - K_s h_d} = \frac{75 + 7}{7(0.15 - 0.004) - 75(0.004)} = 113.5 \text{ h} \approx 5 \text{ d} \]

if we discharge 20 mg/l SS

\[20(0.65) = 13 \text{ mg/l BOD}_5 \]

\[20 + 13 = 33 \text{ mg/l of soluble BOD}_5 \]

leaves us 7 mg/l

we base our design around
\[X = \frac{\Theta_c Y (S_0 - S)}{\Theta (1 + h d \Theta_c)} \]

Either assume \(X \)
or assume \(\Theta \)

Let's assume \(\Theta = 4 \ h \)

\[X = \frac{113.5 (0.5) (250 - 7)}{4 (1 + 0.004 (113.5))} = 2371 \text{ mg/l} \] (USS concentration)