

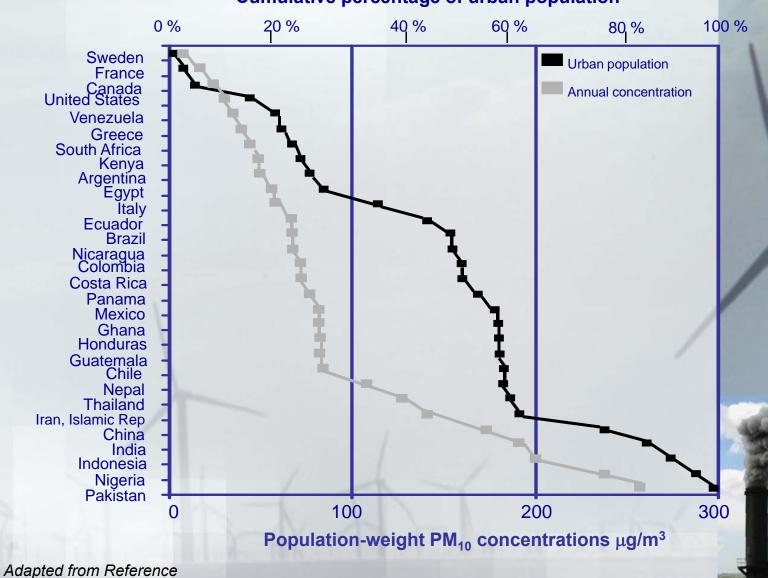
Seven Major Pollutants of Concern

1.P Oxides (SO_x) **2.** S **3.0** 4. N Oxides (NO_x) 5. Carbon M (CO and other hyrdrocarbons) 6. Volatile O Compounds (VOCs) 7.L (& others: mercury, other inorganic metals, radon, HCI)

Particulates

into the air released d

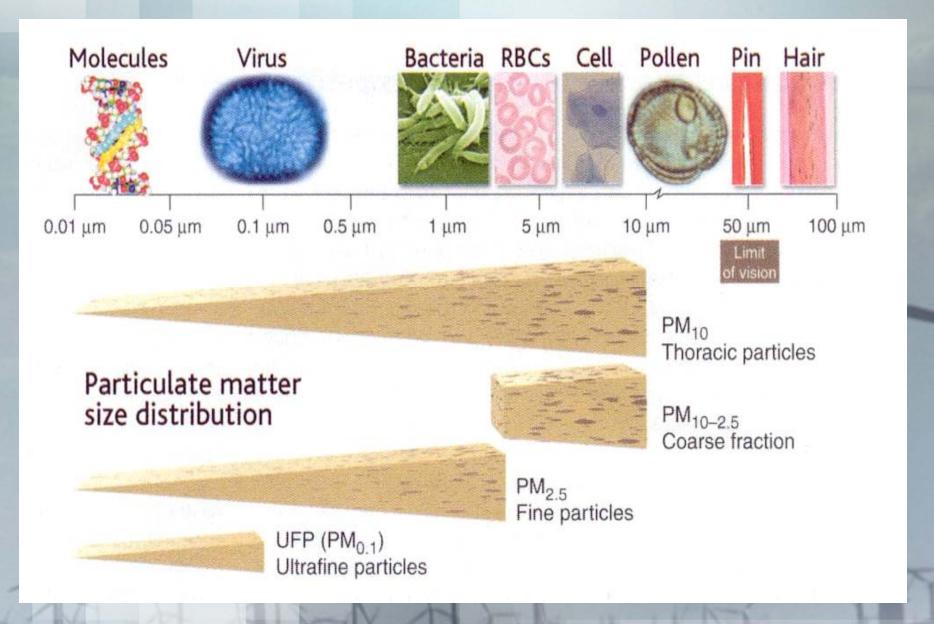
 largely a result of s sources


 a nearly u urban pollutant.

"Although particulate levels in North America and Western Europe rarely exceed 50 micrograms of particulate matter per cubic meter (µg/m³) of air, levels in many Central and Eastern European cities and in many developing nations are much higher, often exceeding 100 μg/m³ (http://www.wri.org/wr-98-

99/urbanair.htm)."

Global distribution of urban PM₁₀ concentrations



Size of Particulates

- PM_{2.5-100}: 2.5 to 100 μ in diameter, usually comprise s and d from industrial processes, agriculture, c and road traffic, p , and other natural sources.
- PM_{2.5}: particles less than 2.5 μ in diameter generally come from combustion of f_______ fuels.
- vehicle exhaust s____, which is often coated with various chemical contaminants
- fine sulfate and nitrate a _____ that form when SO₂ and nitrogen oxides condense in the atmosphere.
- largest source of fine particles is c____-fired power plants, but auto and diesel e____ are also prime contributors, especially along busy transportation corridors.

Health Effects

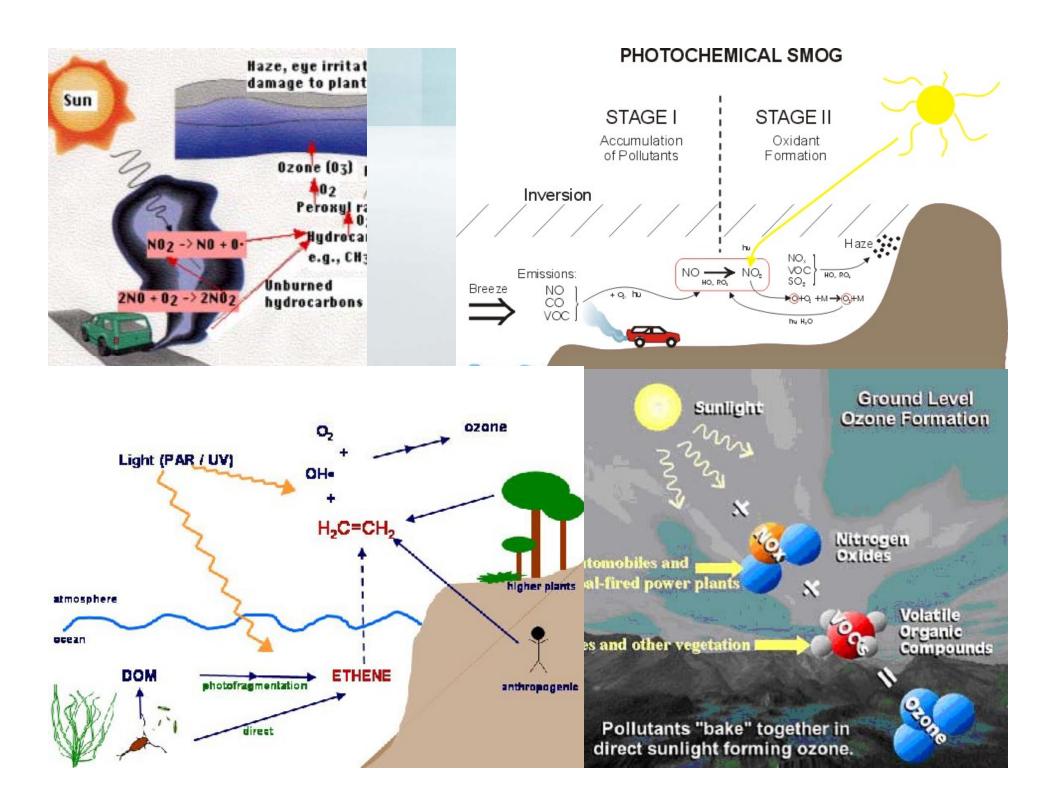
- S____ particulates most damaging (PM_{2.5})
- PM_{2.5} aggravate existing h____ and lung diseases
- changes the body's defenses against
 i____ materials, and damages I____
 tissue.
- E____, children and those with chronic lung or heart disease are most sensitive
- lung impairment can persist for 2-3 weeks after e to high levels of PM_{2.5}
- C____ carried by particulates can also be toxic

Science 307:1857-1861, News Focus, March 2005

Sulfur Oxides

- Sulfur Oxides (SO_X, mainly SO₂)
- emitted largely from burning c____, high-sulfur o___, and d____ fuel.
- usually found in association with p
- SO₂ is the p____ for fine sulfate particles (separating the health effects of these two pollutants is difficult)
- SO₂ and particulates make up a major portion of the pollutant I____ in many cities, acting both separately and in c____ to damage health.
- concentrations are higher by a factor of _____ in a number of cities in Eastern Europe, Asia, and South America, where residential or industrial coal use is still prevalent and diesel traffic is heavy
- major component of a_____ r____

Health Effects


- SO₂ affects people q_____, usually within the first few minutes of e SO₂ exposure can lead to the kind of a health effects typical of particulate pollution. Exposure is linked to an increase in h and deaths from respiratory and cardiovascular causes, especially among a _____ and those with preexisting respiratory diseases severity of these effects increases with rising SO₂ levels, and e enhances the severity by increasing the volume of SO₂ inhaled and allowing SO₂ to penetrate deeper into the respiratory tract Asthmatics may experience w_____ and other symptoms at much lower SO₂ levels than those without asthma.
- When o _____ is also present, asthmatics become even more sensitive to SO₂ indicating the potential for synergistic effects among pollutants

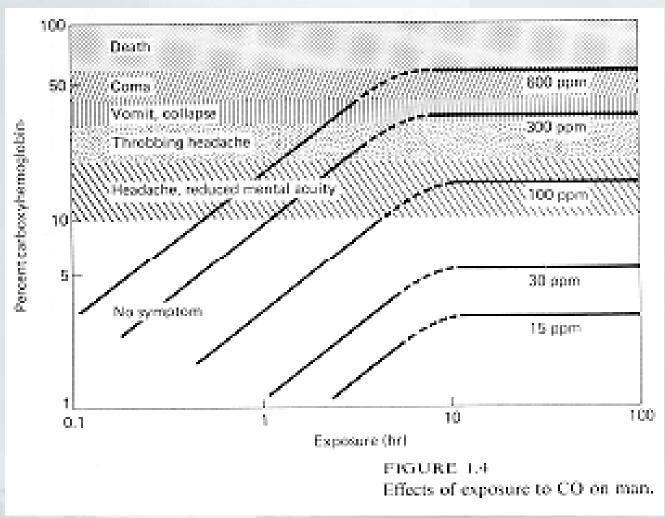
Ozone

- major component of p_____ smog
- formed when _____ from fuel combustion react with VOCs
- S____ and heat stimulate ozone formation, peak levels occur in the s____.
- W_____ in cities in Europe, North America, and Japan as auto and industrial emissions have increased. Many cities in developing countries also suffer from high ozone levels, although few monitoring data exist
- powerful o_____, can react with nearly any biological tissue.

Ozone

- concentrations of 0.012 ppm can irritate the respiratory tract and impair l____ function, causing coughing, shortness of breath, and c____ pain.
- Exercise increases these effects, and heavy exercise can bring on symptoms even at low ozone levels (0.08 ppm).
- ozone exposure l____ the body's defenses, increasing susceptibility to respiratory infections
- As ozone levels rise, hospital a _____ and emergency room visits for respiratory illnesses such as asthma also increase.
- hospital admissions rise roughly 7 to 10 percent for a 0.05 ppm increase in ozone levels.
- in 13 cities where ozone levels e_____ U.S. air standards, the American Lung Association estimated that high ozone levels were responsible for approximately 10,000 to 15,000 extra hospital admissions and 30,000 to 50,000 additional emergency room v____ during the 1993-94 ozone season

Preventable health effects due to a 10% reduction of environmental levels of PM₁₀ and ozone between 2000 and 2020


Nitrogen Oxides

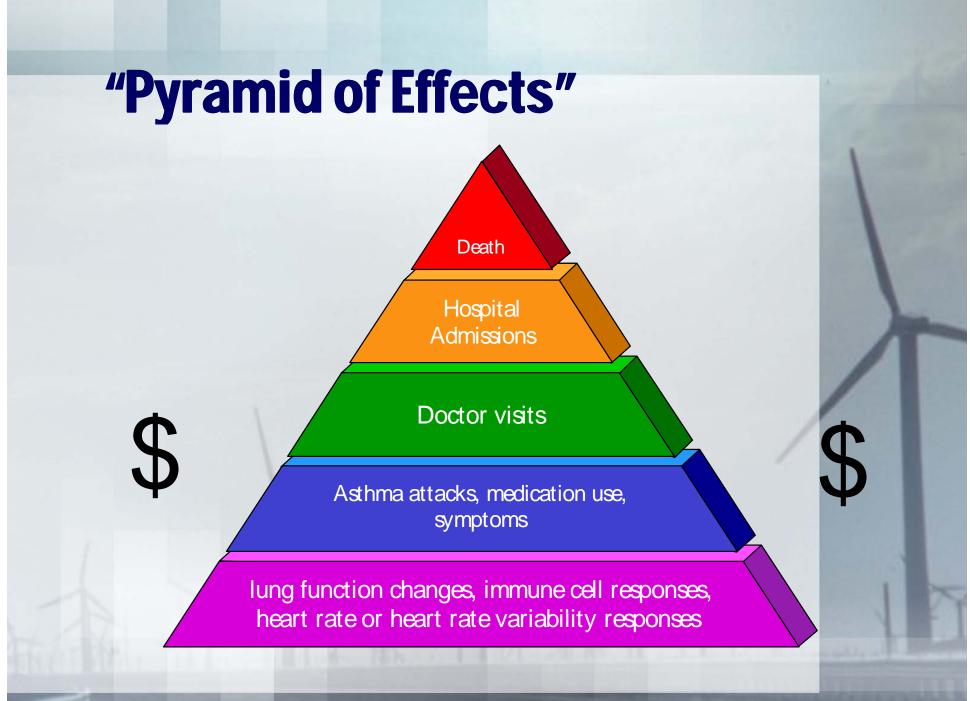
- principal p____ component of photochemical smog
- component of a____ rain (NO_X is oxidized to NO₃⁻ in the atmosphere, NO₃⁻ reacts with moisture to form nitric acid H₂NO₄)
- formed i _____ due to high temperature of combustion of atmospheric nitrogen

Carbon Monoxide

- H has an affinity for CO that is 200 to 250 times its affinity for oxygen
 - this reduces its affinity for oxygen, disrupts release of oxygen.
- Blood level of 0.4% is maintained by CO produced by b_____.
- Blood is cleared of 50% of CO in 3-4 hours after
 e
- Global emissions of CO are 350 million tons per year, 20% from mobile sources.
- CO concentration in c_____ smoke is ~400 ppm.
- 24% of emergency room patients complaining of f___-like symptoms in one study showed carbon monoxide poisoning

Carbon Monoxide health effects

- CO blocks the oxygen transport in your blood.
- CO is 100x
 better at binding
 in the oxygen
 site.
- CO poisoning is like suffocating.


Volatile Organic Compounds (VOCs)

- contribute to o generation
- many are subject to NESHAPS (benzene from gasoline vapors)
- significant i _____ emissions (e.g., perchloroethylene from dry cleaners)
- many are c____ or suspected carcinogens

Other Air Pollutants

- Lead
- Mercury
- other inorganic metals
- Indoor air pollution
 - Second hand smoke
 - Radon

National Ambient Air Quality Standards (NAAQS)

CE 326 Principles of Environmental Engineering, Copyright © 2008 Tim Ellis, Iowa State University

Criteria Pollutants	Standard Type	Avg. Time	Conc.	Health Risks and Concerns	Anthropogenic Sources	Natural Sources
Carbon monoxide	Primary	8 h 1 h	9 ppm 35 ppm	carboxy-hemoglobin (blood)	incomplete combustion from mobile and stationary sources	intermediate in breakdown of methane by hydroxyl radicals (OH·)
Hydrocarbons (measured as CH ₄)	Primary	3 h	240 ppb	photochemical smog	incomplete combustion from mobile and stationary sources	see graph
Lead	Primary	24 h 3 month	18 ppb 6 ppb	CNS	leaded gasoline (obsolete?), smelters and refineries	volcanic activity and soils
Nitrogen dioxide	Primary	annual 1 h	53 ppb 250 ppb	health risks, visibility (NO ₂ has a brown color)	high temperature combustion	bacterial processes in soil release nitrous oxide N ₂ O
Ozone	Primary	1 h 8 h	120 ppb 80 ppb	eye irritation, breathing difficulties	formed in nitrogen oxide photolytic cycle (NO _X + sunlight)	·
Sulfur dioxide	Primary	annual 24 h	30 ppb 140 ppb	respiratory disease	sulfur in fuel	sulfur released in biological processes
Sulfur dioxide	Secondary	3 h	500 ppb	plant damage, material damage		
Total suspended particulates (TSP)	Primary	annual 24 h	75 μg/m³ 150 μg/m³	visibility and respiratory effects	combustion of fossil fuels and industrial activity	soil, sea salt, sand, forest fires, volcanoes
Particulates (PM ₁₀)	Primary	annual 24 h	50 μg/m³ 365 μg/m³	visibility and respiratory effects		
Particulates (PM _{2.5})	Primary	24 h	65 μg/m³	visibility and respiratory effects		