Chapter 6: Annual Cash Flow Analysis

$C=\$ 15+\$ 15$ (A/G, 10\%, 4)
$=\$ 15+\$ 15(1.381)=\$ 35.72$

6-2

$$
\begin{aligned}
B & =[\$ 100+\$ 100(F / P, 15 \%, 4)](A / F, 15 \%, 5) \\
& =[\$ 100+\$ 100(1.749)](0.1483)=\$ 40.77
\end{aligned}
$$

6-3

$E=\$ 60-\$ 15(A / G, 12 \%, 4)$
$=\$ 60-\$ 15(1.359)=\$ 39.62$

	Around the Lake	Under the Lake
First Cost	$\$ 75,000$	$\$ 125,000$
Maintenance	$\$ 3,000 / \mathrm{yr}$	$\$ 2,000 / \mathrm{yr}$
Annual Power Loss	$\$ 7,500 / \mathrm{yr}$	$\$ 2,500 / \mathrm{yr}$
Property Taxes	$\$ 1,500 / \mathrm{yr}$	$\$ 2,500 / \mathrm{yr}$
Salvage Value	$\$ 45,000$	$\$ 25,000$
Useful Life	15 years	15 years

Around the Lake

$$
\begin{aligned}
\text { EUAC } & =\$ 75,000(\mathrm{~A} / \mathrm{P}, 7 \%, 15)+\$ 12,000-\$ 45,000(\mathrm{~A} / \mathrm{F}, 7 \%, 15) \\
& =\$ 75,000(0.1098)+\$ 12,000-\$ 45,000(0.0398) \\
& =\$ 18,444
\end{aligned}
$$

Under the Lake

$$
\begin{aligned}
\text { EUAC } & =\$ 125,000(\mathrm{~A} / \mathrm{P}, 7 \%, 15)+\$ 7,000-\$ 25,000(\mathrm{~A} / \mathrm{F}, 7 \%, 15) \\
& =\$ 125,000(0.1098)+\$ 7,000-\$ 25,000(0.0398) \\
& =\$ 19,730
\end{aligned}
$$

Go around the lake.
6-33

Engineering Department Estimate

EUAC $=\$ 30,000-\$ 3,000($ A/G, $8 \%, 10)$
$=\$ 30,000-\$ 3,000(3.871)$
= \$18,387
Hyro-clean's offer of $\$ 15,000 / \mathrm{yr}$ is less costly.

Alternative A

EUAB-EUAC $=\$ 845-\$ 3,000(0.30672)=-\$ 75.16$

```
Alternative B
EUAB-EUAC \(=\$ 1,400-\$ 5,000(0.30672)=-\$ 133.60\)
```

To maximize (EUAB - EUAC) choose alternative A, (less negative value).

6-37

Machine X

EUAC $=\$ 5,000(A / P, 8 \%, 5)$
$=\$ 5,000$ (0.2505)
$=\$ 1,252$
Machine Y
EUAC $=(\$ 8,000-\$ 2,000)(A / P, 8 \%, 12)+\$ 2,000(0.08)+\$ 150$ $=\$ 1,106$

Select Machine Y.

6-38

Annual Cost of Diesel Fuel $=[\$ 50,000 \mathrm{~km} /(35 \mathrm{~km} / \mathrm{l})] \times \$ 0.48 / \mathrm{l}=\$ 685.71$
Annual Cost of Gasoline $=[\$ 50,000 \mathrm{~km} /(28 \mathrm{~km} / \mathrm{I})] \times \$ 0.51 / \mathrm{I}=\$ 910.71$

EUAC $_{\text {diesel }} \quad=(\$ 13,000-\$ 2,000)(A / P, 6 \%, 4)+\$ 2,000(0.06)$
$+\$ 685.71$ fuel + \$300 repairs + \$500 insurance
$=\$ 11,000(0.2886)+\$ 120+\$ 1,485.71$
$=\$ 4,780.31$
EUAC $_{\text {gasoline }}=(\$ 12,000-\$ 3,000)(A / P, 6 \%, 3)+\$ 3,000(0.06)$
$+\$ 910.71$ fuel $+\$ 200$ repairs $+\$ 500$ insurance $=\$ 5,157.61$

The diesel taxi is more economical.
6-39
Machine A
EUAC $=\$ 1,000+P_{i}$
$=\$ 1,000+\$ 10,000(A / P, 10 \%, 4)-\$ 10,000(A / F, 10 \%, 4)$
$=\$ 1,000+\$ 1,000$
$=\$ 2,000$

Seven year analysis period:
Alternative A
EUAB-EUAC

$$
\begin{align*}
= & \$ 55-[\$ 100+\$ 100(P / F, 10 \%, 3) \\
& \quad+\$ 100(\text { P/F, } 10 \%, 6)](A / P, 10 \%, 7) \\
= & \$ 55-[\$ 7.43
\end{align*}
$$

Alternative B

EUAB-EUAC

$$
\begin{aligned}
= & \$ 61-[\$ 150+\$ 150(\mathrm{P} / \mathrm{F}, 10 \%, 4)](\mathrm{A} / \mathrm{P}, 10 \%, 7) \\
& =\$ 61-[\$ 150+\$ 150(0.683)](0.2054) \\
& =+\$ 9.15
\end{aligned}
$$

Choose B.
Note: The analysis period is seven years, hence one cannot compare three years of A vs. four years of B, If one does, the problem is constructed
so he will get

$$
\begin{aligned}
& \text { ree } \\
& \text { cted }
\end{aligned}
$$

$$
\begin{aligned}
E^{E} A C_{\text {gas }} & =(P-S)(A / P,, \%, n)+\text { SL }+ \text { Annual Costs } \\
& =(\$ 2,400-\$ 300)(A / P, 10 \%, 5)+\$ 300(0.10)+\$ 1,200+\$ 300 \\
& =\$ 2,100(0.2638)+\$ 30+\$ 1,500 \\
& =\$ 2.084
\end{aligned}
$$

$$
\begin{aligned}
\text { EUAC }_{\text {electr }} & =(\$ 6,000-\$ 600)(\mathrm{A} / \mathrm{P}, 10 \%, 10)+\$ 600(0.10)+\$ 750+\$ 50 \\
& =\$ 5,400(0.1627)+\$ 60+\$ 800 \\
& =\$ 1,739
\end{aligned}
$$

Select the electric motor.

6-44

EUAC Comparison

Cho
Equi
EUAC

EUAC
$=\$ 10,000$

$$
=\$ 296,400
$$

Pumping Plan

Initial Investment: = \$1.4 million (A/P, 10\%, 20)

$$
=\$ 1.4 \text { million }(0.1023) \quad=\$ 143,200
$$

Additional investment in $10^{\text {th }}$ year:

$$
\begin{aligned}
& =\$ 200,000(P / F, 10 \%, 10)(A / P, 10 \%, 40) \\
& =\$ 200,000(0.3855)(0.1023)
\end{aligned}=\$ 7,890
$$

Annual Operation and maintenance
$=\$ 25,000$
Power Cost: $\quad=\$ 50,000$ for 40 years
$=\$ 50,000$
Additional Power Cost in last 30 years:

$$
\begin{aligned}
& =\$ 50,000(\mathrm{~F} / \mathrm{A}, 10 \%, 30)(\mathrm{A} / \mathrm{F}, 10 \%, 40) \\
& =\$ 50,000(164.494)(0.00226) \\
& =\$ 18,590 \\
& =\$ 244,680
\end{aligned}
$$

Annual Cost

Select the Pumping Plan.

6-45

Use 20 year analysis period.

$$
\begin{aligned}
& \text { Net Present Worth Approach } \\
& \begin{aligned}
\text { NPW }_{\text {Mas. }}= & -\$ 250-(\$ 250-\$ 10)[(P / F, 6 \%, 4)+\tilde{(P / F}, 6 \%, 8)+(P / F, 6 \%, 12) \\
& \quad+(P / F, 6 \%, 16)]+\$ 10(P / F, 6 \%, 20)-\$ 20(P / A, 6 \%, 20) \\
= & -\$ 250-\$ 240[0.7921+0.6274+0.4970+0.3936) \\
& \quad+\$ 10(0.3118)-\$ 20(11.470) \\
= & -\$ 1,031 \\
\text { NPW }_{\text {BRK }}= & -\$ 1,000-\$ 10(P / A, 6 \%, 20)+\$ 100(P / F, 6 \%, 20) \\
= & -\$ 1,000-\$ 10(11.470)+\$ 100(0.3118) \\
= & -\$ 1,083
\end{aligned}
\end{aligned}
$$

Choose Masonite to save \$52 on Present Worth of Cost.

Equivalent Uniform Annual Cost Approach

$$
\begin{aligned}
\mathrm{EUAC}_{\text {Mas. }} & =\$ 20+\$ 250(\mathrm{~A} / \mathrm{P}, 6 \%, 4)-\$ 10(\mathrm{~A} / \mathrm{F}, 6 \%, 4) \\
& =\$ 20+\$ 250(0.2886)-\$ 10(0.2286) \\
& =\$ 90 \\
\mathrm{EUAC}_{\text {BRK }} & =\$ 10+\$ 1,000(\mathrm{~A} / \mathrm{P}, 6 \%, 20)-\$ 100(\mathrm{~A} / \mathrm{F}, 6 \%, 20) \\
& =\$ 10+\$ 1,000(0.872)-\$ 100(0.0272) \\
& =\$ 94
\end{aligned}
$$

