5-13

$$
\begin{aligned}
P & =\$ 100(\mathrm{P} / \mathrm{A}, 6 \%, 6)+\$ 100(\mathrm{P} / \mathrm{G}, 6 \%, 6) \\
& =\$ 100(4.917)+\$ 100(11.459) \\
& =\$ 1,637.60
\end{aligned}
$$

5-14

PW of Cost = PW of Benefits

$$
\begin{aligned}
P \quad & =\$ 750(P / A, 7 \%, 20)+0.1 P(P / F, 7 \%, 20) \\
& =\$ 750(10.594)+0.1 P(0.2584) \\
& =\$ 7945+0.02584 \mathrm{P} \\
P \quad & =\$ 7945 /(1-0.02584) \\
& =\$ 7945 / 0.97416 \\
& =\$ 8156
\end{aligned}
$$

5-15

Determine the cash flow:

Year	Cash Flow
0	$-\$ 4,400$
1	$\$ 220$
2	$\$ 1,320$
3	$\$ 1,980$
4	$\$ 1,540$

\because

- $=$

5-29

Find i :
$(\mathrm{A} / \mathrm{P}, i, 60) \quad=\mathrm{A} / \mathrm{P}=\$ 250 / \$ 12,000=0.0208$
From tables, $i=3 / 4 \%$ per month $\quad=9 \%$ per year

5-30

$i_{\text {month }}=(1+(0.045 / 365))^{30}-1=0.003705$

$$
\begin{aligned}
\mathbf{P} & =\mathrm{A}\left[\left((1+i)^{\mathrm{n}}-1\right) /\left(i(1+i)^{\mathrm{n}}\right)\right] \\
& =\$ 199\left[\left((1.003705)^{60}-1\right) /\left(0.003705(1.003705)^{60}\right)\right] \\
& =\$ 10,688
\end{aligned}
$$

5-31

$P=$ the first cost $=\$ 980,000$
$\mathrm{F}=$ the salvage value $=\$ 20,000$
$\mathrm{AB}=$ the annual benefit $=\$ 200,000$
Remember our convention of the costs being negative and the benefits being positive. Also, remember the P occurs at time $=0$.
$\begin{aligned} \text { NPW } & =-P+A B(P / A, 12 \%, 13)+F(P / F, 12 \%, 13) \\ & =-\$ 980,000+\$ 200,000(6.424)+\$ 20,000(0.2292) \\ & =\$ 309,384\end{aligned}$
Therefore, purchase the machine, as NPW is positive.

5-32

The market value of the bond is the present worth of the future interest payments and the face value on the current 6% yield on bonds.

$$
\begin{aligned}
\mathrm{A} & =\$ 1,000(0.08 \%) /(2 \text { payments } / \text { year })=\$ 40 \\
\mathrm{P} & =\$ 40(\mathrm{P} / \mathrm{A}, 3 \%, 40)+\$ 1,000(\mathrm{P} / \mathrm{F}, 3 \%, 40) \\
& =\$ 924.60+\$ 306.60 \\
& =\$ 1,231.20
\end{aligned}
$$

5-35

$$
P=A / i=\$ 67,000 / 0.08=\$ 837,500
$$

$x y$

1. $=$

5-36

Two assumptions are needed:

1) Value of an urn of cherry blossoms (plus the cost to have the bank administer the trust) - say \$50.00 / year
2) A "conservative" interest rate--say 5\%

$$
\mathrm{P}=\mathrm{A} i=\$ 50.00 / 0.05=\$ 1,000
$$

5-37

Capitalized Cost $=$ PW of an infinite analysis period
When $\mathrm{n} \quad=\infty \quad$ or $\quad \mathrm{P}=\mathrm{A} / i$

$$
\begin{aligned}
\mathrm{PW} & =\$ 5,000 / 0.08+\$ 150,000(\mathrm{~A} / \mathrm{P}, 8 \%, 40) / 0.08 \\
& =\$ 62,500+\$ 150,000(0.0839) / 0.08 \\
& =\$ 219,800
\end{aligned}
$$

5-38

Compute an A that is equivalent to $\$ 100,000$ at the end of 10 years.

$$
A=\$ 100,000(A / F, 5 \%, 10)=\$ 100,000(0.0795)=\$ 7,950
$$

For an infinite series,

$$
\mathrm{P}=\mathrm{A} / i=\$ 7,950 / 0.05=\$ 159,000
$$

