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ABSTRACT: The photostability of bulk heterojunction organic photovoltaic films
containing a polymer donor and a fullerene-derivative acceptor was examined using
resonance Raman spectroscopy and controlled laser power densities. The polymer
donors were poly(3-hexylthiophene-2,5-diyl) (P3HT), poly[[9-(1-octylnonyl)-9H-
carbazole-2,7-diyl]-2,5-thiophenediyl-2,1,3-benzothiadiazole-4,7-diyl-2,5-thiophenediyl]
(PCDTBT), or poly({4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b′]dithiophene-2,6-
diyl}{3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl}) (PTB7). Four
sample preparation methods were studied: (i) thin or (ii) thick films with fast solvent evaporation under nitrogen, (iii) thick
films with slow solvent evaporation under nitrogen, and (iv) thin films dried under nitrogen followed by thermal annealing.
Polymer order was assessed by monitoring a Raman peak’s full width at half-maximum and location as a function of illumination
time and laser power densities from 2.5 × 103 to 2.5 × 105 W cm−2. Resonance Raman spectroscopy measurements show that
before prolonged illumination, PCDTBT and PTB7 have the same initial order for all preparation conditions, while P3HT order
improves with slow solvent drying or thermal annealing. All films exhibited changes to bulk heterojunction structure with 2.5 ×
105 Wcm−2 laser illumination as measured by resonance Raman spectroscopy, and atomic force microscopy images show
evidence of sample heating that affects the polymer over an area greater than the illumination profile. Photostability data are
important for proper characterization by techniques involving illumination and the development of devices suitable for real-world
applications.

■ INTRODUCTION

Organic photovoltaic devices (OPVs) fabricated from polymer
donors and fullerene-derivative acceptors are a promising
portable and renewable source of electricity.1,2 A common OPV
design has a transparent substrate, a transparent anode, anodic
buffer layer, an active layer containing a donor mixed with
acceptor, a cathodic buffer layer and finally a cathode.2 Other
designs have been reported.2,3 The morphology and order of
the active layer affect OPV performance.4,5 A bound electron−
hole pair (exciton) is created upon absorption of light by the
donor. Bulk heterojunction morphology consists of a highly
ordered polymer donor with a interpenetrating bicontinuous
acceptor structure that helps facilitate the dissociation of an
exciton at the interface between the donor and acceptor.
Donor/acceptor domains of the size of the exciton diffusion
length, typically less than 10 nm, are essential to prevent the
majority of the excitons from decaying.6 Morphology affects,
among other properties, electronic defects (e.g., distortions in
the geometry of sp2 carbon covalent bonds in the π-conjugated
polymers’ backbone), charge mobility (i.e., electron transport
efficiency), and absorption (e.g., shift to longer wavelengths
with increasing polymer order).7−9

Performance metrics for OPV devices typically focus on how
efficiently a constructed device converts solar radiation into
electricity. Of equal importance is the development of stable
OPVs with long operating lifetimes.10−18 One reported case
showed that OPV stability increases when low molecular weight
organic contaminants are removed from the polymer
PBDTTPD (poly[[5-(2-ethylhexyl)-5,6-dihydro-4,6-dioxo-4H-
thieno[3,4-c]pyrrole-1,3-diyl][4,8-bis[(2-ethylhexyl)oxy]benzo-
[1,2-b:4,5-b′]dithiophene-2,6-diyl]]).14 The short-circuit cur-
rent density of cells stored in dark and inert conditions drops
only 6% after 111 days when size exclusion chromatography is
used to reduce low molecular weight species. Fullerene-based
acceptors containing bulky substituents to suppress crystallinity
increased thermal stability. Devices fabricated from these
acceptors can be maintained at 150 °C up to 10 h without
degradation of device efficiency.10 In addition to altering the
composition of the donor and acceptor, OPVs are being
optimized with different preparation conditions. For example

Received: September 22, 2014
Revised: November 20, 2014
Published: November 20, 2014

Article

pubs.acs.org/JPCC

© 2014 American Chemical Society 30229 dx.doi.org/10.1021/jp509589g | J. Phys. Chem. C 2014, 118, 30229−30237

pubs.acs.org/JPCC
http://pubs.acs.org/action/showImage?doi=10.1021/jp509589g&iName=master.img-000.jpg&w=142&h=60


thermal10,13,19,20 and solvent21 annealing can improve device
performance for poly(3-hexylthiophene-2,5-diyl) (P3HT)-
based OPVs. Treatment of the hole transport layer with
ultraviolet light is reported to improve OPV stability as a result
of increased wettability and contact with the active layer.15

These selected examples may not extend to other systems;
degradation mechanisms are known to be complex and largely
material specific.
Raman spectroscopy can be used to measure chemical and

structural properties of the OPV active layer.21−25 Reported
indicators of order in thiophene-based bulk heterojunction
OPVs are the location and full width at half-maximum (fwhm)
of the thiophene symmetric stretch.21,24−27 Smaller fwhm or
Raman shifts are reported to correspond to an increase in the
device efficiency.21,23−25 Furukawa reported the Raman spectra
of powdered and solution P3HT with maximum intensities at
1450 and 1470 cm−1, respectively.28,29 The solution should
exhibit relative disorder while the powder is expected to exhibit
relative order. A recent publication by Wood et al. showed
negligible shifts in the thiophene peak maximum with heating
up to at least 140 °C and a shift of approximately 15 cm−1 only
after annealing the film at ∼200 °C.30

We report photostability measurements of bulk hetero-
junction thin films prepared with one of three polymer donors
and one of four sample preparation methods using resonance
Raman spectroscopy combined with controlled laser power
densities. Raman spectroscopy is ideally suited for these
measurements since the changes in the spectra over time
simultaneously provide information about the polymer stability
and the mechanism of degradation. For example, changes in the
Raman peaks can be assigned to specific functional groups and
spectral background can indicate changes in luminescence.
Many previous Raman studies of OPV films do not report laser
power densities or, when reported, used high laser power
densities. This may affect the measurement of polymer order
through sample heating, degradation, or a similar mechanism.
Our work provides new information on the photostability of
OPV thin films prepared with different active layer
compositions and processing methods, while simultaneously
elucidating the effect of laser power density on the measure-
ment of polymer order.

■ EXPERIMENTAL METHODS
Film Preparation. Samples were generated with the strata

shown in Figure 1.
All samples were prepared and annealed in a nitrogen

environment. First glass substrates coated with a 120 to 160 nm
layer of indium tin oxide (ITO) from Delta Technologies were
spin coated with poly(3,4-ethylenedioxythiophene) and poly-
(styrenesulfonate) (PEDOT:PSS) (Clevios P VP AI 4083,
Heraeus Precious Metals GmbH & Co. KG, Leverkusen,
Germany) at 4000 rpm for 60 s to form a 30 to 40 nm layer.
Next, a film of P3HT, poly[[9-(1-octylnonyl)-9H-carbazole-
2,7-diyl]-2,5-thiophenediyl-2,1,3-benzothiadiazole-4,7-diyl-2,5-
thiophenediyl] (PCDTBT), or poly({4,8-bis[(2-ethylhexyl)-
oxy]benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl}{3-fluoro-2-[(2-
ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl}) (PTB7) (1-
Material, Dorval, Quebec, Canada) mixed with the acceptor
PCxBM (x = 60 for P3HT and x = 70 for PCDTBT and PTB7)
was formed. The specific film compositions and spin coating
parameters are shown in Table 1.
Four preparation methods were used with each donor: a slow

or fast spin coating speed (which affects the film thickness)

with drying under nitrogen, slow spin coating speed with slow
solvent evaporation under nitrogen, and a fast spin coating
speed with drying under nitrogen followed by thermal
annealing for 10 min. After initial sample preparation, the
PCDTBT and PTB7 samples were stored under vacuum for 24
h before measurements were performed. The films were
removed from the nitrogen environment, and all further
analyses were performed at ambient laboratory conditions. The
thickness of the films was measured after the Raman spectra
were collected with a NewView 7100 Profilometer (Zygo,
Middlefield, CT).

Spectral Measurements. A lab-built Raman microscope
based on a DM IRBE platform (Leica, Wetzlar, Germany) with
532 nm laser excitation with a fwhm of 15.8 ± 0.2 cm−1

(Sapphire SF 532 nm 150 mW, Coherent, Santa Clara, CA)
was used to perform the Raman measurements. The laser
profile was expanded using a 10× beam expander (59−127,
Edmund Optics, Barrington, NJ) in order to backfill a 10×
magnification, 0.25 numerical aperture microscope objective
(Leica) to achieve a laser spot with a diameter of 1.6 ± 0.2 μm.
Laser excitation powers at the sample were 50−5000 μW
corresponding to 2.5 × 103 to 2.5 × 105 W cm−2. The films
were illuminated with 1.8 × 104 to 1.8 × 106 suns equivalent of
532 nm laser. The suns equivalent was determined by dividing

Figure 1. At the top is a schematic of the sample layout. Raman
spectra of samples formed with the donor P3HT, PCDTBT, or PTB7
(as indicated by the label and structure) mixed with PCxBM. P3HT
(180.6 ± 0.7 nm thickness), PCDTBT (180 ± 10 nm), and PTB7
(160 ± 10 nm) films were prepared with solvent evaporation under
nitrogen and measured with 2.5 × 103 (P3HT) or 5.0 × 103 Wcm−2

(PCDTBT and PTB7).
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the laser power density (at 532 nm) by the integrated power
density of the sun over all wavelengths. The objective was used
to both focus the laser for excitation as well as collect the
Raman scattering signal from the epi-direction. The Raman
signal was focused with a lens onto a HoloSpec f/1.8i
spectrograph (Kaiser Optical Systems, Ann Arbor, MI) and
directed to a charged coupled device (CCD) (Newton 940,
Andor Technology, Belfast, UK) with 2048 × 512 pixels.
Raman spectra were obtained at ambient laboratory

conditions using Solis software version 4.23.30002.0 (Andor
Technology). Collection times between 1 to 150 s were used
depending on the excitation power in order to maintain a
signal-to-noise ratio in the range of 40 to 75 throughout the
measurements. Two collections were performed to facilitate
cosmic ray removal. Raman images of P3HT samples were
generated with a lab-developed program in Labview (2010
version, National Instruments, Austin, TX) to translate a
sample on a XY-stage (ProScan, Prior Scientific, Rockland,
MA). A power density of 2.5 × 103 Wcm−2 was used with a
collection time of 15 s and a stage movement of 1 μm per step.
Absorption spectra were collected using an Agilent 8453

UV−visible spectrophotometer (Santa Clara, CA). A sample
without the active layer was used to collect a blank spectrum.
Data analysis. Raman spectra were analyzed using Igor Pro

6.3.2.3 (Wavemetrics, Lake Oswego, OR) batch-fit function
with a Gaussian fit from 1325 to 1525 cm−1 for P3HT and
PCDTBT and 1450 to 1550 cm−1 for PTB7. A linear baseline
was used in all of the fits. The properties of a spectral peak,
including full-width at half-maximum (fwhm) and location,
were plotted as a function of time for the stability measure-
ments. Luminescence, which appears as background in Raman
spectra, was measured in a spectral region without Raman peaks
(2000 cm−1).

■ RESULTS AND DISCUSSION

Bulk Heterojunction Thin Film Photostability Meas-
ured with Controlled Laser Power Densities and
Resonance Raman Microscopy. The Raman spectra of
films containing P3HT:PC60BM, PCDTBT:PC70BM, or
PTB7:PC70BM with thicknesses between 160 to 180 nm are
shown in Figure 1. (Hereafter, only the polymer donor is used
to identify the sample under study, and the acceptor is omitted
for simplicity.) All three polymer donors have thiophene-based
groups in their backbone, and exhibit resonantly enhanced

Raman spectra using 532 nm excitation due to the appreciable
absorption at this wavelength (Figure 2).
The most intense peak in each spectrum was used for

subsequent stability measurements. These are the thiophene
group at ∼1450 cm−1 for P3HT,20,31 a broad ring stretch
spanning the two thiophenes and the benzothiadiazole at
∼1447 cm−1 for PCDTBT,32 and the 3-fluorothiophene group
at ∼1490 cm−1 for PTB7.33 The Raman spectrum of PC60BM
and PC70BM has a peak at 1465 cm−1 that is not apparent in
any of the spectra shown in Figure 1. This is expected since
PC60BM and PC70BM have minimal absorption at 532 nm
relative to the polymers, and also have a smaller Raman cross

Table 1. Sample Preparation Conditions and Measured Thickness for the Samples Included in This Study

polymer sample ratioa RPMb time (s)c drying thermal annealing thickness (nm)d fwhm (cm‑1)e

P3HT fast dry thick 1:1 600 40 nitrogen NA 277 ± 3 34.1 ± 0.7
slow dry thick 1:1 600 40 solventf NA 278 ± 5 31.3 ± 0.4
fast dry thin 1:1 1000 40 nitrogen NA 180.6 ± 0.7 34.73 ± 0.07
fast dry thermal anneal thin 1:1 1000 40 nitrogen 100 °C; 600 s 170 ± 20 32.2 ± 0.3

PCDTBT fast dry thick 1:3.5 600 40 nitrogen NA 180 ± 10 22.2 ± 0.6
slow dry thick 1:3.5 600 40 solventf NA 170 ± 20 22.2 ± 0.3
fast dry thin 1:3.5 1500 40 nitrogen NA 111 ± 8 22.0 ± 0.6
fast dry thermal anneal thin 1:3.5 1500 40 nitrogen 80 °C; 600 s 81 ± 3 22.5 ± 0.8

PTB7 fast dry thick 1:1.5 600 60 nitrogen NA 160 ± 10 20.9 ± 0.8
slow dry thick 1:1.5 600 60 solventf NA 190 ± 10 21 ± 1
fast dry thin 1:1.5 1000 60 nitrogen NA 114 ± 4 22.1 ± 0.8
fast dry thermal anneal thin 1:1.5 1000 60 nitrogen 80 °C; 600 s 103 ± 6 21 ± 1

aRatio of polymer donor to PCxBM acceptor. bSpin-coating speed, rotations per minute. cSpin-coating duration. dAs determined by profilometry.
e2.5 × 103 W cm−2. fSolvent was 1,2-dichlorobenzene, and 2 h elapsed during drying under nitrogen.

Figure 2. Absorption spectra for P3HT, PCDTBT, or PTB7 samples
with the following preparation: thick film with solvent evaporation
under nitrogen (black); thick film with slow solvent evaporation under
nitrogen (red); thin film with solvent evaporation under nitrogen
(blue); and a thin film dried under nitrogen followed by thermal
annealing (green). Other sample preparation and thicknesses are
shown in Table 1
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section compared to the polymers.26 Using the same collection
parameters, ∼10× more signal is measured for P3HT compared
to PCDTBT and PTB7. The latter two have similar signal
intensities. In order to compare spectra with similar signal-to-
noise ratios, the acquisition time for all subsequent Raman
measurements was increased for PCDTBT and PTB7. This
results in a decreased time resolution for photostability studies
of these polymers compared to P3HT.
The samples prepared with fast solvent evaporation under

nitrogen conditions were illuminated with power densities of
2.5 × 103 (P3HT), 5.0 × 103 (PCDTBT and PTB7), and 2.5 ×
105 W cm−2 while simultaneously collecting Raman spectra to
measure the photostability of the films over time (Figure 3).
The unprocessed spectra (Figure 3, left column) reveal

changes in the peak and background intensity. The electronic
transitions that occur when using a resonant laser wavelength
can generate background luminescence in the Raman spectra.
With the same experimental conditions as used to collect data
shown in Figure 3, no Raman peaks are recorded for a solution

of P3HT; the background luminescence dominates the
spectrum (data not shown). Background luminescence is
decreased and P3HT Raman peaks are measured for P3HT
or P3HT:PC60BM solid thin films. The intensity of background
luminescence is thus dependent on many properties including
the bulk heterojunction structure. Changes in peak widths or
locations are best observed in the spectra that have been
background subtracted and normalized to the most intense
peak in the spectra (Figure 3, right column).
For P3HT, a 33% decrease in the Raman peak intensity and a

38% decrease in luminescence over 112 s of illumination with
2.5 × 105 Wcm−2 is followed by a relatively stable Raman signal
and slightly increased background over the remaining
illumination time (Figure 3, D1). The decrease in the Raman
signal with continuous illumination indicates that less P3HT is
measured over the analysis time. This could be the result of
P3HT photodegradation (i.e., alterations in the chemical
structure) or changes to the thickness of the film. Atomic
force microscopy (AFM) images of the area illuminated by 2.5

Figure 3. Raw (A1−F1) and normalized background subtracted (A2−
F2) Raman spectra versus illumination time for samples prepared with
the indicated donor. The laser power density is listed at the top of each
set of graphs. All samples were thick films with solvent evaporation
under nitrogen (Table 1). The raw spectra show changes in peak
intensity, including the generation of background luminescence, while
the normalized spectra show changes in peak width and location. The
color scale is Raman scattering intensity.

Figure 4. An expanded view of normalized P3HT Raman spectra
versus illumination time for three laser power densities listed above
each set of graphs. Thick film with solvent evaporation under nitrogen
(A1−A3), thick film with slow solvent evaporation under nitrogen
(B1−B3), thin film with solvent evaporation under nitrogen (C1−
C3), and a thin film dried under nitrogen followed by thermal
annealing (D1−D3). The color scale is Raman scattering intensity.
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× 105 Wcm−2 indicate there are morphological changes to the
film as a result of the laser illumination (Figure S1).
Approximately 9% of the polymer is displaced from around
the location of illumination to surrounding areas; surprisingly,
the area affected is considerably greater than the 1.6 μm
diameter spot of the laser profile. This suggests that sample
heating occurs, affecting an approximately 15 μm diameter spot
centered around the illuminated area. The amount of polymer
displaced by the laser does not entirely explain the 33%
decrease in the Raman signal. Some P3HT photodegradation
may be contributing to the initial decrease in Raman signal and
background. With 2.5 × 105 W cm−2 illumination the peak
fwhm increases from 34.3 ± 0.1 to 36.3 ± 0.4 cm−1 over 600 s;
the peak location does not change (Figure 3 D2). The polymer
that is not displaced by the laser exhibits decreased order as
measured by resonance Raman spectroscopy with 2.5 × 105 W
cm−2 illumination. The increase in luminescence with an onset
time of 75 s suggests that the bulk heterojunction, or mixing of

P3HT and PC60BM, may be affected by the illumination or
resulting sample heating.
The Raman spectra of P3HT show a 14% decrease in the

Raman peak intensity and 22% decrease in luminescence over
600 s with 5.0 × 103 W cm−2 illumination (Figure 3 A1).
Considering the normalized P3HT spectra, there is no
significant change in the ∼1450 cm−1 peak location and a
slight increase in fwhm from 34.1 ± 0.7 to 35.3 ± 0.4 cm−1 with
illumination (Figure 3, A2). No sign of laser-induced changes
to the film were visible in optical images after illumination with
5.0 × 103 W cm−2. Some amount of polymer displacement
and/or photodegradation explains the decrease in Raman signal
and luminescence; however, there are minimal changes to the
bulk heterojunction structure when studied with the lower
power density. This is consistent with work by Manceau et al.
that shows high stability with 1 sun (1000 W m−2) over long
exposure times for thiophene-based donors, and is also
consistent with the work by Tromholt et al. that shows low
degradation rates for thick P3HT:PCBM films.34,35

Figure 5. An expanded view of normalized PCDTBT Raman spectra
versus illumination time for three laser power densities listed above
each set of graphs. Thick film with solvent evaporation under nitrogen
(A1−A3), thick film with slow solvent evaporation under nitrogen
(B1−B3), thin film with solvent evaporation under nitrogen (C1−
C3), and a thin film dried under nitrogen followed by thermal
annealing (D1−D3). The color scale is Raman scattering intensity.

Figure 6. An expanded view of normalized PTB7 Raman spectra
versus illumination time for three laser power densities listed above
each set of graphs. Thick film with solvent evaporation under nitrogen
(A1−A3), thick film with slow solvent evaporation under nitrogen
(B1−B3), thin film with solvent evaporation under nitrogen (C1−
C3), and a thin film dried under nitrogen followed by thermal
annealing (D1−D3). The color scale is Raman scattering intensity.
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The stability of the PCDTBT and PTB7 samples with
illumination is fundamentally different compared to the P3HT
sample. PCDTBT has a relatively stable Raman intensity,
background, peak fwhm, and peak location with 5.0 × 103 W
cm−2 illumination (Figure 3, B1−B2). With 2.5 × 105 Wcm−2

illumination, the Raman signal is fairly constant, but there is an
evolution of luminescence starting after approximately 200 s of
illumination and a 2 cm−1 increased peak fwhm after 50 s
(Figure 3, E1−E2). The AFM image of the illuminated area

shows extensive morphology changes to the film with a
decrease in polymer thickness localized to the area of
illumination (Figure S1). Interestingly, the 82% decrease in
the AFM height images at the area of illumination does not
result in a decrease in the Raman intensity. One possibility for
the stable PCDTBT Raman intensity could be due to the
localized heating causing the PC70BM to phase segregate and
migrate, which is known to occur during thermal annealing.36

The Raman spectra of PTB7 follow similar trends at all power
densities as measured for PCDTBT with a 5.0 × 103 W cm−2

illumination (Figure 3, C1−C2 and F1−F2). Also, the AFM
images of PTB7 after 5.0 × 103 W cm−2 illumination are nearly
identical to the P3HT AFM image, both showing an
approximately 9% displacement of the polymer film extending
beyond the illuminated area. For both PCDTBT and PTB7, the
relatively stable Raman intensity, increased fwhm, and increase
in luminescence suggest a less favorable bulk heterojunction
structure results with illumination or associated sample heating.
When performing laser-based measurements of thin films,

the power density should be low enough to avoid influencing
the measurement unless photostability is the property of
interest. Laser-based measurements can provide false informa-
tion as a result of the laser illumination used to generate the
data. The laser power and illumination area (i.e., power
density) should be considered as well as the duration of
illumination. High NA objectives are especially problematic as
they focus the light to a small spot and can lead to substantial
laser power densities. Power densities of 2.5 × 103 to 2.5 × 105

Wcm−2 with a 1.6 ± 0.2 μm diameter excitation spot size were
used in this work (only data for selected, representative power
densities have been included in the figures and tables). As
discussed above, changes to the films were measured within
seconds for P3HT, PCDTBT, and PTB7 at the higher end of
the power density range used in this study, which is similar to
the ∼105 W cm−2 power densities with visible excitation
wavelengths that have been used in some Raman studies of
polymer order.22,23 Recent work indicates that the film
thickness can affect degradation rates for a polymer
donor.35,37,38 Two thickness ranges were included for each
polymer donor in the present study; photostability rates may
vary for other film thicknesses.

Bulk Heterojunction Thin Film Order and Stability as
a Function of Sample Preparation Method. Raman
measurements were performed to determine the effect of
preparation conditions on the polymer order in bulk
heterojunction thin films. The peak fwhm was measured with
2.5 × 103 (P3HT) or 5.0 × 103 (PCDTBT and PTB7) W cm−2

and a 3.5 s acquisition and illumination time (Table 1). In these
studies, peak fwhm exhibited greater changes than peak
location from one sample to the next. P3HT shows significant
changes to polymer order with varying sample preparation
methods; this is consistent with other analysis methods.21,39−41

The relative order is highest for the film that was slowly dried
by solvent annealing under nitrogen, and decreases for the film
that was thermally annealed after drying under nitrogen. The
least ordered are the thin and thick films dried under nitrogen
without further processing. Supporting Information Figure S2
corresponds to 32 × 32 μm Raman images generated from
fwhm of P3HT spectra measured with a power density of 2.5 ×
103 W cm−2. Each image corresponds to one of the sample
preparation methods studied. While the order varies for
samples with different preparation conditions, as already
discussed, the 0.3 cm−1 standard deviation in the fwhm

Figure 7. Plots of background luminescence measured at 2000 cm−1 in
the Raman spectra versus illumination time for samples fabricated with
the indicated donor. The top three graphs were collected using 5.0 ×
103 W cm−2 and the bottom three graphs with 2.5 × 105 W cm−2. The
color code for the samples are thick film with solvent evaporation
under nitrogen (black); thick film with slow solvent evaporation under
nitrogen (red); thin film with solvent evaporation under nitrogen
(blue); and a thin film dried under nitrogen followed by thermal
annealing (green). Comparing the results for samples with different
preparation , the primary differences in the luminescence intensity are
explained by film thickness (Table 1), with the thicker films producing
more luminescence than the thinner films in most cases.
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indicates a high degree of uniformity across a sample. This is
expected since the typical P3HT or PCBM domain size
measured for samples with similar preparations conditions is
reported to be considerably smaller (e.g., nanoscale) than the
diameter of the laser spot used to collect the Raman images.5

Absorption spectra are susceptible to changes in isolated,
ordered and disordered phases of P3HT.42 Peaks at 550 and
600 nm are assigned to ordered phases, while peaks at higher
energies correspond to isolated and disordered phases. The
Raman fwhm values (Table 1) and absorption spectra (Figure
2), when normalized to account for differences in film
thickness, show relative agreement on the degree of polymer
order for the P3HT films prepared with different preparation
conditions.
In the case of PCDTBT and PTB7 there are no statistically

significant differences in the fwhm measured for samples with
different preparation conditions (Table 1). Raman spectrosco-
py measurements show that the PCDTBT film is not affected
by thermal annealing at 80°. This finding is supported by
neutron reflectivity and grazing incidence wide-angle X-ray
scattering measurements that showed thermal annealing at 70°
has a negligible effect on PCDTBT order.43 Consistent with the
Raman data, PCDTBT and PTB7 show minimal changes in
their absorption spectra for samples with different preparation
conditions when sample thickness is taken into account (Figure
2).
Photostability was tested for each polymer donor and sample

preparation method. The Raman spectra collected for the four
sample preparation methods and three power densities are
shown in Figure 4 for P3HT, Figure 5 for PCDTBT, and
Figure 6 for PTB7. Qualitatively, the Raman spectral changes
and luminescence (Figure 7) are similar to the trends that have

already been discussed and are independent of sample
preparation method for a given polymer donor.
A quantitative measure of peak properties was performed for

P3HT and PCDTBT (Table 2). The background in the PTB7
spectra produced large uncertainties at long illumination times,
particularly for the highest power density, and further
quantification of peak properties was not performed. Despite
having different fwhm values at the start of illumination, the
fwhm measured for all four sample preparation methods are
statistically similar after illumination with the highest power
density for P3HT. This indicates that regardless of the effect of
preparation conditions on the initial order, the resulting order
after illumination is not dependent on the preparation
conditions. This is not true for PCDTBT, which shows a
correlation between film thickness and polymer order after
illumination at the higher power densities. The two thinnest
samples had the greatest relative disorder (fwhm 27.3 ± 0.9 and
27 ± 2 cm−1) measured after illumination for power densities
greater than 2.5 × 104 W cm−2.

■ CONCLUSIONS

Laser-based studies of P3HT, PCDTBT, and PTB7 using high
laser power densities can degrade the morphology or bulk
heterojunction structure, which will invalidate the results of the
study. This work highlights power densities and exposure times
that lead to reliable resonance Raman measurements of
polymer order, which varies with preparation conditions for
P3HT but not PCDTBT or PTB7. Also, the measured
photostability varied for P3HT, PCDTBT, and PTB7. The
photostability after prolonged illumination with the highest
power density was not significantly different for the sample
preparation conditions studied for P3HT; however, PCDTBT

Table 2. Raman Peak Parameters Measured at the Start of the Illumination and after 600 s of Illumination for Samples with the
Indicated Donor, Preparation Condition, and Power Density

polymer sample
power density (W

cm−2)
fwhm (cm−1) at

t0
fwhm (cm−1) at

tend
peak locationa (cm−1) at

t0
peak location (cm−1) at

tend

P3HT fast dry thick 2.5 × 103 34.1 ± 0.7 35.3 ± 0.4 1454 1452
2.5 × 104 34.4 ± 0.2 35.1 ± 0.3 1453 1449
2.5 × 105 34.3 ± 0.1 36.3 ± 0.4 1452 1449

slow dry thick 2.5 × 103 31.3 ± 0.4 31.23 ± 0.09 1451 1451
2.5 × 104 31.3 ± 0.2 34.8 ± 0.8 1451 1447
2.5 × 105 32.03 ± 0.09 36.4 ± 0.5 1450 1448

fast dry thin 2.5 × 103 34.73 ± 0.07 34.0 ± 0.9 1454 1451
2.5 × 104 35.4 ± 0.3 37.8 ± 0.8 1453 1448
2.5 × 105 34.1 ± 0.3 36.4 ± 0.05 1451 1448

fast dry thermal anneal thin 2.5 × 103 32.2 ± 0.3 32.2 ± 0.5 1452 1451
2.5 × 104 32.6 ± 0.1 36.8 ± 0.5 1451 1447
2.5 × 105 33.6 ± 0.2 36 ± 1 1450 1449

PCDTBT fast dry thick 5.0 × 103 22.2 ± 0.6 22.9 ± 0.6 1449 1448
2.5 × 104 22.1 ± 0.2 24.0 ± 0.3 1449 1447
2.5 × 105 23.0 ± 0.1 25 ± 1 1448 1446

slow dry thick 5.0 × 103 22.2 ± 0.3 23.3 ± 0.4 1449 1448
2.5 × 104 22.2 ± 0.2 23.8 ± 0.2 1449 1447
2.5 × 105 23.7 ± 0.2 25 ± 1 1447 1446

fast dry thin 5.0 × 103 22.0 ± 0.6 21.8 ± 0.8 1449 1448
2.5 × 104 23.0 ± 0.7 26 ± 1 1448 1447
2.5 × 105 22.4 ± 0.1 27.3 ± 0.9 1449 1447

fast dry thermal anneal thin 5.0 × 103 22.5 ± 0.8 22.9 ± 0.6 1449 1448
2.5 × 104 22.9 ± 0.2 24.9 ± 0.2 1448 1447
2.5 × 105 26 ± 3 27 ± 2 1451 1447

a13 cm−1 spectral resolution
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may exhibit a thickness-dependent stability with illumination.
This information can be used to design more stable devices,
with the end goal of OPVs suitable for a range of real-world
applications.
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