Transparencies to accompany Rosen, Discrete Mathematics and Its Applications Section 8.4

Section 8.4
Closures of Relations

Definition: Theclosure of arelation R with respect to
property P isthe relation obtained by adding the minimum
number of ordered pairsto R to obtain property P.
In terms of the digraph representation of R

 To find the reflexive closure - add loops.

 To find the symmetric closure - add arcsin the
opposite direction.

 To find the transitive closure - if thereis a path from
ato b, add an arc from ato b.

Note: Reflexive and symmetric closures are easy.
Transitive closures can be very complicated.

Definition: Let Abeasetandlet D ={<x, x> | xin A}.
D is called the diagonal relation on A (sometimes called
the equality relation E).
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Note that D isthe smallest (has the fewest number of
ordered pairs) relation which isreflexive on A.

Reflexive Closure

Theorem: Let R be arelation on A. The reflexive closure
of R, denoted r(R), is RE D.

» Add loopsto all vertices on the digraph
representation of R.

* Put 1's on the diagonal of the connection matrix of
R.

Symmetric Closure

Definition: Let R bearelationon A. Then R ™ or the
inverse of RistherelationR *={<y,x><x,y> R

Note: toget R *

o reverse al the arcsin the digraph representation of
R

« take the transpose M " of the connection matrix M
of R.
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Note: Thisrelation is sometimes denotedasR " or R ©
and called the converse of R

The composition of the relation with its inverse does not
necessarily produce the diagonal relation (recall that the
composition of a bijective function with itsinverseisthe
identity).

Theorem: Let R be arelation on A. The symmetric
closureof R, denoted s(R), istherelation RE R .

Examples:
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Examples:
elf A=Z, then r(* )=2ZxZ
If A=Z", theng(<)=1.
What is the (infinite) connection matrix of s(<)?

eIf A= Z, thens(E) =7
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Theorem: Let R, and R, be relations from A to B. Then
*(R)*=R
*(RRER)'"=R*ER,*
*(RRCR) =R "¢ R"™
«(AXxB)'=BxA
e El= £
+R1=R"
*(R-R)'=R*-R,*
«lIf A=B,then(RR,) "= R,*'R;™

elIf Rji R,thenR,*i R,™

Theorem: Rissymmetriciff R= R

Paths

Definition: A path of lengthn inadigraph Gisa
sequence of edges <X,, X;><X;, X,> ... <X,q, X;>.

The terminal vertex of the previous arc matches with the
Initial vertex of the following arc.
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If X, = X, the path is called acycle or circuit. Similarly for
relations.

Theorem: Let R be arelation on A. Thereis a path of
length nfrom ato b iff <a,b>1 R".

Proof: (by induction)

» Basis: An arc from ato b isapath of length 1
whichisin R' = R. Hence the assertion istrue for n= 1.

* |nduction Hypothes's: Assume the assertion is true
for n.

Show it must be true for n+1.
Thereis apath of length n+1 from ato b iff thereisan x in
A such that there is a path of length 1 from ato x and a
path of length n from x to b.
From the Induction Hypothesis,
<a,x>1 R

and since <x , b> isapath of length n,

<x,b> 1 R".

<g,x>1 R
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and

<x,b>1 R",
then

<a,b>T R"ecR =R™!
by the inductive definition of the powers of R.

Q. E.D.

Useful Results
for Transitive Closure

Theorem:
IfAl BandCIl B,thenAE CI B.
Theorem:
IfRI Sand Tl Uthen RoT1 SoU.
Corollary:
If R SthenR"1 &

Theorem:

If Ristransitivethen soisR"
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Trick proof: Show (R"? = (R)"| R"

Theorem: If R“=R for somej > k, then R*™= R" for
somen£ .

We don’t get any new relations beyond R.

As soon as you get a power of R that isthe same as one
you had before, STOP.

Transitive Closure

Recall that the transitive closure of arelation R, t(R), is
the-smallest trangitive relation containing R.

Also recall
Ristrangitiveiff R"iscontained in R for all n

Hence, if thereis a path from x to y then there must be an
arcfromxtoy, or <x,y>isinR.

Example:

elf A= Zand R={<I,i1+1>}thent(R) = <

» Suppose R: isthe following:
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)

What ist(R)?

O

Definition: The connectivity relation or the star closure
of therelation R, denoted R*, isthe set of ordered pairs
<a, b> such that thereisapath (in R) from ato b:

Examples:
eletA=ZandR= {<i,i+1>}. R* = <.

» Let A =the set of people, R= {<x, y> | personx is
aparent of persony}. Rx = ?
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Theorem: t(R) = R*.
Proof:
Note: thisis not the same proof as in the text.
We must show that R*
1) isatransitive relation
2) contains R

3) isthe smallest transitive relation which
contains R

Proof:
Part 2):
Easy from the definition of R*.
Part 1):
Suppose <x, y> and <y, z> arein R*.
Show <x, zz isin R*.

By definition of R*, <x, y> isin R™ for some m
and <y, z> isin R" for some n.

Then <x,z> isinR"R™= R™"which is
contained in R*. Hence, R* must be transitive.
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Part 3):

Now suppose Sis any transitive relation that
contains R.

We must show S contains R* to show R* isthe
smallest such relation.

RI SsoR?1 1 SsinceSistrangtive
ThereforeR"1 S'1 Sfor all n. (why?)

Hence S must contain R* since it must also
contain the union of all the powers of R.

Q.E.D.

In fact, we need only consider paths of length n or less.

Theorem: If |A | = n, then any path of length > n must
contain acycle.

Proof:
If we write down alist of more than n vertices representing

apath in R, some vertex must appear at least twice in the
list (by the Pigeon Hole Principle).
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Thus R* for k> n doesn’t contain any arcs that don’t
already appear in the first n powers of R.

Corollary: If |A|=n,thent(R)=R*=RE R*E .. . E
Rn

Corollary: We can find the connection matrix of t(R) by
computing the join of the first n powers of the connection
matrix of R.

Powerful Algorithm!

Example:

Do the following in class:

R2:

R3:
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R4

Rb5:

{(R) = R*:

So that you don’t get bored, here are some problems to
discuss on your next blind date:

1) Do the closure operations commute?
* Does st(R) = ts(R)?
* Doesrt(R) =tr(R)?
* Doesrs(R) = sr(R)?

2) Do the closure operations distribute
» Over the set operations?
» Over inverse?
* Over complement?

e Qver set inclusion?
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Examples:
* Doest(R1- R2) =t(R1) - t(R2)?

e Doesr(R?) =[r(R)]*?
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