
Section 8.4
Closures of Relations

Definition: The closure  of a relation R with respect to
property P is the relation obtained by adding the minimum
number of ordered pairs to R to obtain property P.

In terms of the digraph representation of R

• To find the reflexive closure - add loops.

• To find the symmetric closure - add arcs in the
opposite direction.

• To find the transitive closure - if there is a path from
a to b, add an arc from a to b.

_________________

Note: Reflexive and symmetric closures are easy.
Transitive closures can be very complicated.

_________________

Definition: Let A be a set and let ∆  = {<x, x> | x in A}.
∆  is called the diagonal relation  on A  (sometimes called
the equality  relation E).

__________________
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Note that D is the smallest (has the fewest number of
ordered pairs) relation which is reflexive on A .

Reflexive Closure

Theorem: Let R be a relation on A. The reflexive closure
of R, denoted r(R),  is R ∪ ∆ .

• Add loops to all vertices on the digraph
representation of R.

• Put 1’s on the diagonal of the connection matrix of
R.

Symmetric Closure

Definition: Let R  be a relation on A. Then  R -1 or the
inverse  of R is the relation R -1 = {< y,x >|< x,y >∈ R}

__________________

Note: to get R -1

• reverse all the arcs in the digraph representation of
R

• take the transpose M T  of the connection matrix M
of R.  
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_____________________

Note: This relation is sometimes  denoted as R T  or R c

and called the converse  of R

The composition of the relation with its inverse does not
necessarily produce the diagonal relation (recall that the
composition of a  bijective    function    with its inverse is the
identity).

___________________

Theorem: Let R  be a relation on A. The symmetric
closure of R, denoted s(R ),  is the relation R ∪ R−1.

___________________

Examples:

R
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r(R)

s(R)

_________________

Examples:

• If A = Z, then  r( ≠ ) = Z x Z

• If A = Z+,  then s( < ) = ≠.

 What is the (infinite) connection matrix of s(<)?

• If A = Z, then s(≤) = ?

_________________________
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Theorem: Let R1 and R2 be relations from A  to B. Then

• ( R -1) -1 = R

• (R1 ∪ R2) 
-1 = R1 

-1 ∪ R2 
-1

• (R1 ∩ R2) 
-1 = R1 

-1 ∩ R2 
-1

• (A x B) -1 = B x A

• ∅  -1 = ∅

• R -1 = R−1

• (R1 - R2)
 -1 = R1 

-1 - R2 
-1

• If A = B, then (R1R2) 
-1 = R2

 -1 R1
 -1

• If R1 ⊆  R2 then R1
 -1 ⊆  R2 

-1

____________________

Theorem: R is symmetric iff R = R -1

Paths

Definition: A path  of length n  in a digraph G is a
sequence of edges <x0, x1><x1, x2> . . . <xn-1, xn>.

The terminal vertex of the previous arc matches with the
initial vertex of the following arc.
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If x0 = xn the path is called a cycle  or circuit. Similarly for
relations.

_________________

Theorem: Let R be a relation on A. There is a path of
length n from a to b iff <a, b> ∈ Rn.

Proof: (by induction)

 • Basis: An arc from a to b is a path of length 1
which is in R1 = R. Hence the assertion is true for n = 1.

•    Induction Hypothesis   : Assume the assertion is true
for n.

Show it must be true for n+1.

There is a path of length n+1 from a to b iff there is an x in
A such that there is a path of length 1 from a to x and a
path of length n from x to b.

From the Induction Hypothesis,

<a, x> ∈ R

and since <x , b> is a path of length n,

<x, b>  ∈ Rn.

If
<a, x> ∈ R
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and

<x, b> ∈ Rn,
then

<a, b> ∈   Rn o R  = Rn+1

by the inductive definition of the powers of R.

Q. E. D.
______________________

Useful Results
for Transitive Closure

Theorem:

If A  ⊂ B and C ⊂ B, then A  ∪ C ⊂ B.

Theorem:

If R ⊂ S and T ⊂ U then   Ro T ⊂ SoU .

Corollary:

If R ⊂ S then Rn  ⊂ Sn

Theorem:

If R is transitive then so is Rn
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Trick proof: Show (Rn)2  = (R2)n ⊂ Rn

Theorem:   If Rk = R j for some j > k, then R j+m = Rn for
some n ≤ j.

We don’t get any new relations beyond R j.

As soon as you get a power of R that is the same as one
you had before, STOP.

Transitive Closure

    Recall    that the transitive closure of a relation R, t(R), is
the    smallest    transitive relation containing R.

Also recall

R is transitive iff Rn is contained in R for all n

Hence, if there is a path from x to y then there must be an
arc from x to y, or <x, y> is in R.

Example:

• If A = Z and R = {< i, i+1>} then t(R) = <

• Suppose R: is the following:
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What is t(R)?

_________________

Definition:  The connectivity  relation or the star closure
of the relation R, denoted R*, is the set of ordered pairs
<a, b> such that there is a path (in R) from a to b:

  
R* = Rn

n=1

∞
U

__________________

Examples:

• Let A = Z and R = {<i, i+1>}. R* = <.

• Let A  = the set of people, R = {<x, y> | person x is
a parent of person y}. R* = ?

__________________
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Theorem: t(R) = R*.

Proof:

Note: this is not the same proof as in the text.

We must show that R*

1)  is a transitive relation

2) contains R

3) is the smallest transitive relation which
contains R

Proof:

Part 2):

Easy from the definition of R*.

Part 1):

Suppose <x, y> and <y, z> are in R*.

Show <x, z> is in R*.

By definition of R*, <x, y> is in Rm for some m
and <y, z> is in Rn for some n.

Then <x, z> is in Rn Rm = Rm+n which is
contained in R*. Hence, R* must be transitive.
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Part 3):

Now suppose S is any transitive relation that
contains R.

We must show S contains R* to show R* is the
   smallest    such relation.

R ⊂ S so R2 ⊂ S2 ⊂ S since S is transitive

Therefore Rn ⊂ Sn ⊂ S for all n. (why?)

Hence S must contain R* since it must also
contain the union of all the powers of R.

Q. E. D.

________________

In fact, we need only consider paths of length n or less.

_________________

Theorem: If |A | = n, then any path of length > n must
contain a cycle.

Proof:

If we write down a list of more than n vertices representing
a path in R, some vertex must appear at least twice in the
list (by the Pigeon Hole Principle).
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Thus Rk for k > n doesn’t contain any arcs that don’t
already appear in the first n powers of R.

___________________

Corollary: If | A | = n, then t(R) = R* = R ∪ R2 ∪ . . . ∪
Rn

Corollary: We can find the connection matrix of t(R) by
computing the join of the first n powers of the connection
matrix of R.

Powerful Algorithm!

___________________

Example:

a b

c

Do the following in class:

R2:

R3:
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R4:

R5:
•
•
•

t(R) = R*:
______________________

So that you don’t get bored, here are some problems to
discuss on your next blind date:

1) Do the closure operations commute?

• Does st(R) = ts(R)?

• Does rt(R) = tr(R)?

• Does rs(R) = sr(R)?

2) Do the closure operations distribute

• Over the set operations?

• Over inverse?

• Over complement?

• Over set inclusion?

_________________
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Examples:

• Does t(R1 - R2) = t(R1) - t(R2)?

• Does r(R-1) = [r(R)]-1?

_________________

Transparencies to accompany Rosen, Discrete Mathematics and Its Applications Section 8.4

Prepared by: David F. McAllister TP 14 ©1999, 2007 McGraw-Hill


