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Section 4.3
Recursive Definitions and Structural I nduction

Recursive or inductive definitions of sets and functions on
recursively defined sets are similar.

1. Basis step:
For sets-
« State the basic building blocks (BBB's) of the
set.
or

For functions-

« State the values of the function on the BBB's.
2. Inductive or recursive step:

For sets-

« Show how to build new things from old with
some construction rules.

or
For functions-

« Show how to compute the value of afunction
on the new things that can be built knowing the value on
the old things.
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3. Extremal clause:
For sets-

* If you can't build it with afinite number of
applications of steps 1. and 2. then it isn't in the set.

For functions-

* A function defined on arecursively defined set
does not require an extremal clause.

Note: Y our author doesn't mention the extremal clause.

It is a standard part of an inductive definition of a set but
often ignored (“since everybody knows it is supposed to be
there”).

Also note:

» To prove something is in the set you must show how
to construct it with afinite number of applications of the
basis and inductive steps.

 To prove something is not in the set is often more
difficult.

Example:

A recursive definition of N:
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1. Basis.
OisinN (Oisthe BBB).
2. Induction:
if nisin N thensoisn+ 1 (how to build
new objects from old: “add one to an old object to get
anew one”).

3. Extremal clause:

If you can't construct it with a finite number
of applicationsof 1. and 2., itisn'tin N.

Now given the above recursive definition of N we can give
recursive definitions of functions on N:

1. f(0) = 1 (theinitial condition or the value of the
function on the BBB’S).

2.f(n+ 1) = (n+ 1) f(n) (the recurrence equation,
how to define f on the new objects based on its value on
old objects)
f isthe factorial function: f(n) = nl.

Note how it follows the recursive definition of N.

Proof of assertions about inductively defined objects
usually involves a
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Proof by induction.

* Prove the assertion is true for the BBBs in the basis
step.

* Prove that if the assertion is true for the old objects
it must be true for the new objects you can build from the
old objects.

 Conclude the assertion must be true for all objects.

Example:
We define aninductively wherenisin N.
*Basis a0=1

e Induction: aln+ 1) =ana

Theorem: " m' nfa™a" =a™"]
Proof:

Since the powers of a have been defined inductively we
must use a proof by induction somewhere.

Get rid of the first quantifier on m by Universal
| nstantiation:

e Assume misarbitrary.
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Now prove the remaining quantified assertion
"na™a"=a™"]
by induction:
1. Basis step: Show it holdsfor n = 0.
The left side becomes a™a’ = a™(1) =a™
Theright side becomes a™° = a™
Hence, the two sides are equal to the same value.

2. Induction step: The Induction hypothesis:

Assume the assertion istrue for n: a™a" =a™".
Now show itistrueforn + 1.
The left side becomes
a"a" =a"(a'a) =(ama")a=a""a
which follows from
« the inductive step in the definition of an and
* the induction hypothesis and
« the associativity of multiplication.

The right side becomes

am+(n+1) — a(m+n)+1 — am+na
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which follows from

* the inductive definition of the powers of a
» the associativity of addition.

Hence, we have shown for arbitrary m that

"na™a" =a™"]
IS true by induction.
Since m was arbitrary, by Universal Generalization,
"m' nfa"a" =a""].

Q. E.D.

Example: A recursive definition of the Fibonacci sequence
1. Basis:
f(0)=f(1) =1
(two initial conditions)
2. Induction:
f(n+1)=f(n) +f(n-1)

(the recurrence equation).
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Example:

A recursive definition of the set of strings over afinite
aphabet a.

The set of all strings (including the empty or null string | )
is called (the monoid) a*.

(Excluding the empty string it iscalled a+.)
1. Basis:
The empty string | isina*.
2. Induction:

If wisina* and aisasymbol in &, then
wa isina*.
Note: we can concatenate a on the right or left, but it
makes a difference in proofs since concatenation is not
commutative!

3. Extremal clause.

Note: infinitely long strings cannot bein a*. (why?)
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Example:
Leta ={a, b}. Thenaabisina*.
Proof:

We construct it with afinite number of applications of the
basis and inductive steps in the definition of a*:

1.1 isina* by the basis step.

2. By step 1., the induction clause in the definition of
a* and thefact that aisin a, we can concludethat | a=a
isina*.

3. Sinceaisina* from step 2., and aisasymbol in
a, applying the induction clause again we conclude that aa
isina*.

4. Sinceaaisina* fromstep3andbisina,
applying the induction clause again we conclude that aab is
ina*.

Since we have shown aab isin a* with a finite number of

applications of the basis and induction clausesin the
definition we have finished the proof.

Q.E.D.
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Example:

We give an inductive definition of the well formed
parenthesis strings P:

1. Basis clause:
()isinP
2. Induction clause:
if wisin Pthenso are
() w, (w), and w()

3. Extremal clause

Example:
(()())isinP.

Proof:
1. () isin P by the basis clause

2. ()() must bein P by step 1. and the induction
clause

3.(() ()) must bein P by step 2. and the induction
clause.

Q.E.D.

Note: ))(() isnot in P. Why? Can you prove it?
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(Hint: what can you say about the length of stringsin P?
How can you order the stringsin P?)

One More Example:
The set S of hit strings with no more than asingle 1.
Basis.

| ,0,1laeinsS

| nduction:
If wisin S, then so are Ow and w0

Extremal Clause
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