
   Section 2.4
Sequences and Summations 

Definition: A sequence is a function from a subset of the
natural numbers (usually of the form {0, 1, 2, . . . } to a
set S.

Note: the sets

{0, 1, 2, 3, . . . , k}

and

{1, 2, 3, 4, . . . , k}

are called initial segments of N.

Notation: if f is a function from {0, 1, 2, . . .} to S we
usually denote f(i) by ai and we write

{a0, a1, a2, a3, . . . }  = {ai}i=0
k  =  {ai}0

k

where k is the upper limit (usually ∞).

_________________

Examples:

Using zero-origin indexing, if f(i) = 1/(i + 1). then the
sequence

f = {1, 1/'2,1/3,1/4, . . . } = {a0, a1, a2, a3, . . }
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Using one-origin indexing the sequence f becomes

{1/2, 1/3, . . .} = {a1, a2, a3, . . .}

Summation Notation

Given a sequence {ai}0
k  we can add together a subset of the

sequence by using the summation and function notation

ag(m) + ag (m+1)+... +ag(n ) = ag( j )
j=m

n

∑

or more generally

a j
j∈S
∑

_______________________

Examples:

r0 + r1 + r2 + r 3 +... +rn = r j

0

n

∑

1+
1
2

+
1
3

+
1
4

+... =
1
i1

∞
∑

a2m + a2(m+1) +... +a2(n) = a2 j
j=m

n

∑

If S = {2, 5, 7, 10} then a j
j∈S
∑  = a2 + a5 + a7 + a10

Similarly for the product notation:
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aj = am am+1...an
j=m

n

∏

____________________________

Definition: A geometric progression is a sequence of the
form

a, ar, ar2, ar3, ar4, . . . .

Your book has a proof that

r i

i=0

n

∑ =
rn+1 −1
r −1

 if r ≠ 1

 (you can figure out what it is if r = 1).

You should also be able to determine the sum

• if the index starts at k vs. 0

• if the index ends at something other than n (e.g., n-
1, n+1, etc.).

Cardinality

Definition: The cardinality of a set A is equal to the
cardinality of a set B, denoted | A | = | B |, if there exists a
bijection from A to B.
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Definition: If a set has the same cardinality as a subset of
the natural numbers N, then the set is called countable.

If |A| =  |N|, the set A is countably infinite.

The (transfinite) cardinal number of the set N is

aleph null = ℵ0.

If a set is not countable we say it is uncountable.

_________________

Examples:

The following sets are uncountable (we show later)

• The real numbers in [0, 1]

• P(N), the power set of N

______________________

Note: With infinite sets proper subsets can have the same
cardinality. This cannot happen with finite sets.

Countability carries with it the implication that there is a
listing  of  the elements of the set.

___________________________

Definition: | A | ≤ | B | if there is an injection from A to
B.

Note: as you would hope,
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Theorem: If | A | ≤ | B | and | B | ≤ | A | then | A | = | B |.

This implies

• if there is an injection from A to B

• if there is an injection from B to A

then

• there must be a bijection from A to B

This is    difficult    to prove but is an example of
demonstrating existence without construction.

It is often easier to build the injections and then conclude
the bijection exists.

_______________

Example:

Theorem: If A is a subset of B then | A | ≤ | B |.

Proof: the function f(x) = x is an injection from A to B.

________________
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Example:

| {0, 2, 5} |  ≤  ℵ0

The injection f: {0, 2, 4} →N defined by f(x) = x is shown
below:

0     1     2     3     4     5     6     . . . 

0    2    5

Some Countably Infinite Sets

• The set of even integers E ( 0 is considered even) is
countably infinite. Note that E is a proper subset of N!

Proof: Let f(x) = 2x. Then f is a bijection from N to E

0     1     2     3     4     5     6     . . . 

0     2     4     6     8    10  12     . . .

• Z+, the set of positive integers is countably infinite.

___________________
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• The set of  positive rational numbers Q+ is countably
infinite.

Proof: Z+ is a subset of Q+ so | Z+ | = ℵ0 ≤ | Q+ |.

Now we have to show that | Q+ | ≤  ℵ0.

To do this we show that the positive rational numbers with
repetitions, QR, is countably infinite.

Then, since Q+ is a subset of QR, it follows that | Q+ | ≤
ℵ0 and hence | Q+ | =  ℵ0.

x
y 1      2      3      4      5      6       7      

1

2

3

4

5

1/1    2/1    3/1   4/1   5/1   6/1   7/1

1/2   2/2   3/2   4/2   5/2   6/2   7/2

1/3   2/3   3/3   4/3   5/3   6/3   7/3

1/4   2/4   3/4   4/4   5/4   6/4   7/4

The position on the path (listing) indicates the image of the
bijective function f from N to QR:

f(0) = 1/1, f(1) = 1/2, f(2) = 2/1, f(3) = 3/1, and so forth.

Every rational number appears on the list at least once,
some many times (repetitions).
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Hence, | N | = | QR |  = ℵ0.

Q. E. D.

__________________

• The set of all rational numbers Q, positive and
negative, is countably infinite.

__________________

• The set of (finite length) strings S over a finite
alphabet A is countably infinite.

To show this we assume that

- A is nonvoid

- There is an “alphabetical” ordering of the
symbols in A

Proof: List the strings in lexicographic order:

- all the strings of zero length,
- then all the strings of length 1 in alphabetical

order, 
- then all the strings of length 2 in alphabetical

order, 
etc.

This implies a bijection from N to the list of strings and
hence it is a countably infinite set.
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For example: Let A = {a, b, c}.

Then the lexicographic ordering of A is

{λ , a, b, c, aa, ab, ac, ba, bb, bc, ca, cb, cc, aaa, aab,
aac, aba, ....} = {f(0), f(1), f(2), f(3), f(4), . . . .}

___________________

 • The set of all C programs is    countable   .

Proof: Let S be the set of legitimate characters which can
appear in a C program.

- A C compiler will determine if an input program is a
syntactically correct C program (the program doesn't have
to do anything useful).

- Use the lexicographic ordering of S and feed the
strings into the compiler.

• If the compiler says YES, this is a syntactically
correct C program, we add the program to the list.

• Else we move on to the next string.

In this way we construct a list or an implied bijection from
N to the set of C programs.

Hence, the set of C programs is countable.

Q. E. D.
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Cantor Diagonalization

- An important technique used to construct an object which
is not a member of a countable set of objects with
(possibly) infinite descriptions

Theorem: The set of real numbers between 0 and 1 is
uncountable.

Proof: We assume that it is countable and derive a
contradiction.

If it is countable we can list them (i.e., there is a bijection
from a subset of N to the set).

We show that no matter what list you produce we can
construct a real number between 0 and 1 which is not in
the list.

Hence, there cannot exist a list and therefore the set is not
countable

It's actually much bigger than countable. It is said to have
the cardinality of the continuum, c.

 Represent each real number in the list using its decimal
expansion.

e.g., 1/3 = .3333333........
 1/2 = .5000000........
       = .4999999........

If there is more than one expansion for a number,  it
doesn't matter as long as our construction takes this into
account.
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THE LIST....

r1 = .d11d12d13d14d15d16. . . . .
r2 = .d21d22d23d24d25d26 . . . .
r3 = .d31d32d33d34d35d36 . . . .
.
.
.

Now construct the number x = .x1x2x3x4x5x6x7. . . .

xi = 3 if dii ≠ 3
xi = 4 if dii = 3

(Note: choosing 0 and 9 is not a good idea because of the
non uniqueness of decimal expansions.)

Then x is not equal to any number in the list.

Hence, no such list can exist and hence the interval (0,1) is
uncountable.

Q. E. D.
_____________________

An extra goody:

Definition: a number x between 0 and 1 is  computable if
there is a C program which when given the input i, will
produce the ith digit in the decimal expansion of x.

____________________

Transparencies to accompany Rosen, Discrete Mathematics and Its Applications Section 2.4

Prepared by: David F. McAllister TP 11 ©1999, 2007 McGraw-Hill



Example:

The number 1/3 is computable.

The C program which always outputs the digit 3,
regardless if the input, computes the number.

_______________

Theorem: There is exists a number x between 0 and 1
which is not computable.

There does not exist a C program (or a program in any
other language) which will compute it!

Why? Because there are more numbers between 0 and 1
than there are C programs to compute them.

(in fact there are c such numbers!)

Our second example of the    nonexistence    of programs to
compute things!

_________________

Transparencies to accompany Rosen, Discrete Mathematics and Its Applications Section 2.4

Prepared by: David F. McAllister TP 12 ©1999, 2007 McGraw-Hill


