
Section 1.2
Propositional Equivalences

A tautology  is a proposition which is always    true   .

Classic Example:  P∨¬P

___________________

A contradiction  is a proposition which is always    false   .

Classic Example: P∧¬P

___________________

A contingency  is a proposition which neither a tautology
nor a contradiction.

Example: (P ∨Q) → ¬R

____________________

Two propositions P and Q are logically equivalent  if
P↔Q is a tautology. We write

P⇔Q

____________________

Example: (P → Q) ∧ (Q → P) ⇔ (P ↔ Q)
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Proof:

The left side and the right side must have the same truth
values    independent    of the truth value of the component
propositions.

To show a proposition is not a tautology: use an
abbreviated  truth table

- try to find a counter example or to disprove  the
assertion.

-  search for a case where the proposition is false

Case 1: Try left side false, right side true

Left side false: only one of P → Q or Q → P need be
false.

1a. Assume P → Q = F.
Then P = T , Q = F. But then right side P↔Q = F. Oops,
wrong guess.

1b. Try Q → P = F. Then Q = T, P = F. Then P↔Q
= F. Another wrong guess.

Case 2. Try left side true, right side false
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If right side is false, P and Q cannot have the same truth
value.

2a. Assume P =T, Q = F.
Then P → Q = F and the conjunction must be false so the
left side cannot be true in this case. Another wrong guess.

2b. Assume Q = T, P = F.
Again the left side cannot be true.

We have exhausted all possibilities and not found a
counterexample. The two propositions must be logically
equivalent.

Note: Because of this equivalence, if and only if  or iff  is
also stated as is a necessary and sufficient condition for.

Some famous logical equivalences:

Logical Equivalences
P ∧ T ⇔ P

P ∨ F ⇔ P

Identity

P ∨ T ⇔ T

P ∧ F ⇔ F

Domination

P ∨ P ⇔ P

P ∧ P ⇔ P

Idempotency

¬(¬P)) ⇔ P Double negation
P ∨Q ⇔ Q ∨ P

P ∧ Q ⇔ Q ∧ P

Commutativity

(P ∨Q)∨ R ⇔ P∨ (Q ∨ R)

(P ∧ Q) ∧ R ⇔ P ∧ (Q ∧ R)
Associativity
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P ∧ (Q∨ R) ⇔
(P ∧ Q)∨ (P ∧ R)

P ∨ (Q ∧ R) ⇔
(P ∨Q)∧ (P ∨ R)

Distributivity

¬(P ∧ Q) ⇔ ¬P ∨ ¬Q

¬(P ∨ Q) ⇔ ¬P ∧ ¬Q

DeMorgan’s laws

P → Q ⇔ ¬P ∨Q Implication
P ∨ ¬P ⇔ T

P ∧ ¬P ⇔ F

Tautology
Contradiction

P ∧ T ⇔ P

P ∨ F ⇔ P
(P → Q) ∧ (Q → P) ⇔
(P ↔ Q)

Equivalence

(P → Q) ∧ (P → ¬Q) ⇔
¬P

Absurdity

(P → Q) ⇔ (¬Q → ¬P) Contrapositive
P ∨ (P ∧ Q) ⇔ P

P ∧ (P ∨Q) ⇔ P

Absorption

(P ∧ Q) → R ⇔
P → (Q → R)

Exportation

Note: equivalent expressions can always be substituted for
each other in a more complex expression - useful for
simplification.
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Normal or Canonical Forms

Unique representations of a proposition

Examples:

Construct a    simple    proposition of two variables which is
true only when

• P is true and  Q is false:
P ∧ ¬Q

• P is true and Q is true:
P ∧ Q

• P is true and Q is false or P is true and Q is true:
(P ∧ ¬Q) ∨ (P ∧ Q)

A disjunction of conjunctions where

- every variable or its negation is represented once in
each conjunction (a minterm)

-  each minterms appears only once

Disjunctive Normal Form (DNF)

Important in switching theory, simplification in the design
of circuits.
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________________

Method: To find the minterms of the DNF.

• Use the rows of the truth table where the proposition
is 1 or True

• If a zero appears under a variable, use the negation
of the propositional variable in the minterm

• If a one appears, use the propositional variable.

_________________

Example:

Find the DNF of (P ∨Q) → ¬R

P Q R (P ∨Q) → ¬R

0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 0

There are 5 cases where the proposition is true, hence 5
minterms. Rows 1,2,3, 5 and 7 produce the following
disjunction of minterms:
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(P ∨Q) → ¬R

⇔ (¬P ∧ ¬Q ∧ ¬R) ∨ (¬P ∧ ¬Q ∧ R)∨ (¬P ∧ Q ∧ ¬R)

∨(P ∧ ¬Q ∧ ¬R) ∨ (P ∧Q ∧ ¬R)

__________________

Note that you get a Conjunctive Normal Form  (CNF) if
you negate a DNF and use DeMorgan’s Laws.

__________________
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