
Optimal Sensor Selection for Discrete Event Systems

with Partial Observation 1

Shengbing Jiang
GM R&D and Planning
Mail Code 480-106-390

30500 Mound Road
Warren, MI 48090-9055
shengbing.jiang@gm.com

Ratnesh Kumar
Department of Electrical & Computer Engineering

Iowa State University
2215 Coover Hall
Ames, IA 50011

rkumar@iastate.edu

Humberto E. Garcia
Argonne National Laboratory
Idaho Falls, ID 83403-2528

garcia@anl.gov

1The research was supported in part by the U.S. Department of Energy contract W-31-109-Eng-

38, and also in part by the National Science Foundation under the grants NSF-ECS-9709796 and

NSF-ECS-0099851, a DoD-EPSCoR grant through the Office of Naval Research under the grant

N000140110621, and a KYDEPSCoR grant. The work was performed while the first two authors

were at the University of Kentucky.



Abstract

For discrete event systems under partial observation, we study the problem of selection
of an optimal set of sensors that can provide sufficient yet minimal events observation in-
formation needed to accomplish the task at hand such as that of control or estimation.
The sufficiency of the observed information is captured as the fulfillment of a desired for-
mal property such as (co-)observability or normality (for control under partial observation),
state-observability (for state estimation under partial observation), diagnosability (for failure
diagnosis under partial observation), etc. A selection of sensors can be viewed as a selection
of an observation mask and also of an equivalence class of events. A sensor set is called op-
timal if any coarser selection of the corresponding equivalence class of events results in some
loss of the events observation information so that the task at hand cannot be accomplished,
or equivalently the desired formal property cannot be fulfilled. We study an optimal selection
of sensors over the set of general “non-projection” observation masks. We show that this
problem is NP-hard in general. For mask-monotonic properties (that are preserved under
increasing precision in events observation information, such as (co)-observability, normality,
state-observability, diagnosability, etc.), we present a “top-down” and a “bottom-up” algo-
rithm each of polynomial complexity. We show that observer-ness is not mask-monotonic.
We show that the computational complexity can be further improved if the property is pre-
served under the projection via an intermediary observation mask that is an observer. Our
results are obtained in a general setting so that they can be adapted for an optimal selection
of sensors for a variety of applications in discrete event systems including (co-)observability,
normality, diagnosability (single failure as well as repeated failures), state-observability, and
invertibility.

Keywords: Discrete event systems, partial observation, sensor selection



1 Introduction

Discrete event systems are systems that possess discrete states which are event-driven,
i.e., evolve in response to certain discrete qualitative changes called events. Examples include
manufacturing systems, communication networks and protocols, embedded systems, traffic
and transportation systems, asynchronous digital circuits, process control systems, and also
many other systems can be modeled as discrete event systems at a certain level of abstraction.
These systems react to the events occurring in their environments and also generate output
events in response to the input ones. One way to determine/estimate the states of such
systems is to track through sensors the events they react to and the events they generate.

The untimed, logical, or qualitative behavior of a discrete event system is given by the
collection of all event sequences that can occur starting from its initial state. A feasible
event sequence is called a trace, and the collection of all traces starting from the initial
state is called a language. Some of the applications that require on-line determination of
system states include estimation and control. Several works based upon the supervisory
control theory [13] address the control of discrete event systems, and various notions of state
estimation under partial observations were first developed in [11].

For a deterministic system, the current state of the system can be uniquely determined by
the knowledge of its initial state and the occurred event sequence. This requires that each
event be completely observed through sensors. For many applications, however, it is not
necessary to determine the current state of the system exactly, and an estimate consisting
of a set of potential current states suffices. For example, to know whether a buffer of
capacity one in a manufacturing system is full or empty, it is enough to sense the arrival
and departure events for the buffer, and the actual types of the incoming parts need not be
known (or sensed). Thus, even if more powerful sensors can be installed to sense the actual
types of the incoming parts, they are redundant, and simpler motion sensors to sense the
arrival and departure of parts suffice.

As argued above, applications may be such that a partial observations of occurring events
is adequate for the specific task at hand, and a complete observation of events although
feasible is unnecessary. There may also be situations where a complete observation of events
is infeasible. For example, it may not be possible to sense the occurrence of a failure event
(such as a conveyor mechanism getting jammed). Thus, a lack of complete observation of
events may arise either by choice (since application does not warrant a complete observation)
or otherwise (such as the infeasibility of sensing the occurrence of a failure event). In either
case, it is desirable that the events observation information provided by the available sensors
be adequate for the task at hand.

The adequacy of the events observation information provided by the available sensors
can be expressed as a formal property that is a function of the selected sensor set. For
control under partial observation for example, if it is needed that control actions following a
pair of traces be different, then the events observation information provided by the sensors
must be able to discriminate between such a pair of traces. This formal property is called
observability [10]. If it is further required that all events that a controller can control
must also be observed, which for example is the case with the setting of local control [10,
9], then the required formal property is stronger than that of observability, and is called
normality [10, 8]. For decentralization control under partial observation, if it is needed that

1



control actions following a pair of traces be different, then the events observation information
provided by the sensors must be such that at least one controller is able to discriminate
between such a pair of traces. This formal property is called co-observability [1, 15]. For
diagnosis under partial observation, it is required that we be able to discriminate between a
nominal and a faulty trace within a bounded delay from the time of the occurrence of a fault,
and so the events observation information provided by the sensors must have the required
discriminating capability. This formal property is called diagnosability [16]; an extension
of this property for discriminating among the numbers of failures, called repeated failure
diagnosability is given in [7]. For state estimation under partial observation, it is required
that the estimates of the current state converge to a singleton value within a bounded
number of state transitions, and so the events observation information provided by the
sensors must be able to discriminate among the traces leading to different states within a
bounded number of state transitions. This formal property is called state-observability [11].
Other formal properties of interest may include generalized co-observability [21], with-delay-
state-observability [11], invertibility (with-delay and with-delay-with-unknown-initial-state)
[12], and observer-ness [19]. Algorithms of polynomial complexity for testing the above
mentioned properties exist [17, 14, 6, 7, 11, 12, 22, 21].

The presence of a partial observation of events can be modeled via a map, called an
observation mask, defined from the set of system events to the set of their observed values.
An event is said to be unobservable if it is not sensed, or equivalently, its mask value is the
null event. For example, a failure event may be unobservable. A pair of events are called
indistinguishable if their observed values are identical. For example, arrival of two different
types of parts may be sensed identically by a motion sensor. An observation mask is said
to be projection type, if it maps an event to either itself or the null event. Thus, only those
events are indistinguishable from each other under a projection observation mask are the
ones that are unobservable. Other more general observation masks are called non-projection
masks. An observation mask can also be viewed as an equivalence relation over the set
of system events together with the null event, where all indistinguishable events belong to
the same equivalence class, and the equivalence class of the null event consists of all the
unobservable events. An observation mask is said to be finer than another observation mask
if each of its equivalence class of events is a subset of some equivalence class of events of
the second observation mask. In this case, the second observation mask is said to be coarser
than the first one.

It is desirable to have a set of sensors that provides adequate events observation informa-
tion so that a formal property of interest is satisfied (as noted above the satisfaction of such
a formal property implies the capability to accomplish a desired task at hand). Further, the
set of sensors should be such that the corresponding equivalence class of events is as coarse as
possible. We call a sensor set to be optimal if any equivalence class of events that is coarser
than the one induced by the given sensor set is inadequate for the fulfillment of the desired
formal property. In this paper we study the problem of selecting an optimal set of sensors,
or equivalently an optimal observation mask, over the set of general non-projection obser-
vation masks. This extends the earlier works (such as [5, 22, 2, 3]) that select an optimal
observation mask over the set of projection observation masks.

It is known that a unique optimal observation mask does not exist for a variety of appli-
cations (such as (co-)observability, normality, diagnosability) even when the search space is

2



the set of projection observation masks [5, 22, 3]. This is because optimal sensor sets may
exist for which the induced equivalence classes of events are not comparable (in the degree
of coarseness). Further, it is also known that the computation of an optimal observation
mask that possesses the least number of equivalence classes of events, called a minimum
cardinality optimal sensor set, is of exponential complexity in the number of system events,
for a variety of applications including (co-)observability, normality, and diagnosability, even
when the search space is the set of projection observation masks [22]. We show that even the
problem of selection of an optimal sensor set (not necessarily one with the minimal cardi-
nality) is NP-hard in general. However, for properties such as (co)-observability, normality,
state-observability, and diagnosability, that are preserved under increasing precision in events
observation information, called mask-monotonicity property, the problem of optimal sensor
set selection has polynomial complexity in the number of system events. We present al-
gorithms of polynomial complexity for computing optimal sensor sets for mask-monotonic
properties. These algorithms guarantee the optimality of the computed sensor set, but not
the minimum cardinality of the equivalence classes they induce. We show that the observer-
ness does not possess the mask-monotonicity property, and so the computational complexity
of an optimal sensor set for the observer-ness property remains open. However, it is interest-
ing to note that the computation of an optimal reporter map for the observer-ness property
is known to have a polynomial complexity [20].

For mask-monotonic properties, two different algorithms of polynomial complexity for
computing an optimal sensor set (over the set of non-projection observation masks) is pre-
sented. The first algorithm is based upon a top-down method that starts with the observation
mask that is the least-upper-bound of all the adequate observation masks, i.e., it is the coars-
est observation mask finer than all the adequate ones. Since the “identity” observation mask
in which all equivalence classes of events are singletons is obviously an adequate observation
mask (this we assume without loss of generality, since otherwise no adequate observation
mask exists), the least-upper-bound observation mask is the identity observation mask. The
second algorithm is based upon a bottom-up method that starts with the observation mask
that is the greatest-lower-bound of all the adequate observation masks, i.e., it is the finest
observation mask coarser than all the adequate ones. We show that such an observation
mask, which we call a necessary observation mask, exists, and present an algorithm of poly-
nomial complexity in the number of system events for computing it. It should be noted that
the polynomiality of complexity in the number of system states of all our algorithms follows
from the fact that the desired formal properties of interest can be verified polynomially in
the number of system states (which is known from earlier works as pointed above).

The complexity of our algorithms can be further improved if the desired formal prop-
erty possesses an additional property that it is preserved under the projection via an in-
termediary observation mask, called mask-preserving property. Specifically, a property is
mask-preserving if it holds that the property is satisfied under a composed observation
mask M2 ◦ M1 by an unmasked system if and only if the property is satisfied under the
observation mask M2 by the system masked by M1. We show that normality possesses the
mask-preserving property. It was shown in [18] that whenever the observation mask M1 is an
observer, the system masked by M1 is less complex, i.e., has fewer states, than the unmasked
system. Thus, for a mask-preserving property such as normality, verification of the property
under the composed observation mask M2 ◦M1 for the unmasked system, is equivalent to

3



verification of the property under the observation mask M2 for the system masked by M1,
resulting in further computational saving whenever M1 is an observer.

Our algorithms for computing an optimal sensor set are general in the sense that they
can be adapted for computing an optimal sensor set for a specific application at hand such
as (co-)observability, normality, diagnosability, repeated diagnosability, state-observability,
with-delay-state-observability, invertibility, etc. The rest of the paper is organized as follows.
Section 2 presents some notations and preliminaries. The problem of optimal sensor selection
and its NP-hardness is shown in Section 3. Two different polynomial complexity algorithms
for finding an optimal set of sensors for mask-monotonic properties is given in Section 4.
Section 5 explores the computational savings resulting from mask-preserving properties,
when the intermediary mask is an observer. Section 6 presents an illustrative example.
Finally, Section 7 concludes the work presented.

2 Notation and Preliminary

In this section, we introduce some notations and preliminaries taken from [8].
Let A be a set, a binary relation R ⊂ A × A over A is called a partial ordering relation

if it satisfies the following:

• Reflexivity: ∀a ∈ A, aRa;

• Antisymmetry: ∀a, b ∈ A, [aRb] ∧ [bRa]⇒ [a = b];

• Transitivity: ∀a, b, c ∈ A, [aRb] ∧ [bRc]⇒ [aRc].

A pair (A,R) is called a partially ordered set or poset if R is a partial ordering relation over
A. In the following, we use ≤ to denote a partial ordering relation, and use (A,≤) to denote
a poset.

Let (A,≤) be a poset and B ⊆ A, then

1. b ∈ B is the least element of B if ∀x ∈ B, b ≤ x.

2. b ∈ B is a minimal element (or minimum) of B if 6 ∃x ∈ B s.t. [x ≤ b] ∧ [x 6= b].

3. b ∈ B is the greatest element of B if ∀x ∈ B, x ≤ b.

4. b ∈ B is a maximal element (or maximum) of B if 6 ∃x ∈ B s.t. [b ≤ x] ∧ [x 6= b].

5. a ∈ A is an infimum (or the greatest lower bound) of B in (A,≤), denoted infB, if
a ≤ b for all b ∈ B and 6 ∃a′ ∈ A with [a ≤ a′] ∧ [a′ 6= a] such that a′ ≤ b for all b ∈ B.

6. a ∈ A is an supremum (or the least upper bound) of B in (A,≤), denoted supB, if
b ≤ a for all b ∈ B and 6 ∃a′ ∈ A with [a′ ≤ a] ∧ [a′ 6= a] such that b ≤ a′ for all b ∈ B.

It can be easily shown that for a poset (A,≤) and B ⊆ A, the following holds.

1. b ∈ B is the least element of B if and only if b = infB.

2. b ∈ B is the greatest element of B if and only if b = supB.

4



Let C ⊆ 2A, then C is called a partition of A if

• ∀c1, c2 ∈ C, c1 6= c2 ⇒ c1 ∩ c2 = ∅;

• ∪c∈Cc = A.

We use CA to denote the set of all partitions of A. ∀C1, C2 ∈ CA, C2 is called finer than
C1, denoted C1 ≤A C2, if ∀X ∈ C2, ∃Y ∈ C1 such that X ⊆ Y . In this case, C1 is called
coarser than C2. ∀C1, C2 ∈ CA, C2 is called one step finer than C1, denoted C1 ≤

1
A C2, if

C1 ≤A C2 and there does not exist C ∈ CA other than C1 and C2 such that C1 ≤A C ≤A C2.
In this case, C1 is called one step coarser than C2. It is easy to verify that ≤A is a partial
ordering relation over CA. Thus, (CA,≤A) is a poset. We also have that C le

A = {A} is the
least element of CA and Cge

A = {{a} | a ∈ A} is the greatest element of CA.
A discrete event system G is modeled as a state machine, which is a 5-tuple:

G = (Q,Σ, R, q0, Qm),

where

• Q is a finite state set,

• Σ is a finite event set,

• R ⊆ Q× (Σ ∪ {ε})×Q is the state transition set,

• q0 ∈ Q is the initial state,

• Qm ⊆ Q is the set of marked state.

We use L(G) ⊆ Σ∗ (resp., Lm(G)) to denote the generated language (resp., marked language)
of G, where Σ∗ denotes the set of all finite length event traces. The partial observation
of events is modeled as an observation mask M : Σ ∪ {ε} → ∆ ∪ {ε} with M(ε) = ε,
and ∆ is the set of observed values. For notational simplicity, we adopt the following:
Σ := Σ ∪ {ε} and ∆ := ∆ ∪ {ε}. M can be extended to the event traces in Σ∗ as follows:
∀s ∈ Σ∗, σ ∈ Σ, M(sσ) = M(s)M(σ). The mask of the system G, denoted by M(G), is
the state machine obtained from G by masking the event label of each transition in G, i.e.,
M(G) = (Q,∆, RM , q0, Qm) with RM = {(q1,M(σ), q2) | (q1, σ, q2) ∈ R}. It is easy to verify
that L(M(G)) = M(L(G)).

Let CΣ be the set of all partitions of Σ. Then each observation maskM induces a partition
CM ∈ CΣ of Σ, where CM = {[σ]M | σ ∈ Σ} with [σ]M = {σ′ ∈ Σ | M(σ′) = M(σ)}.
Conversely, each partition C ∈ CΣ of Σ induces an observation mask MC : Σ → ∆C , where
∆C = {Y ∈ C | ε 6∈ Y }, and ∀σ ∈ Σ, if σ ∈ Y ∈ ∆C then MC(σ) = Y , otherwise MC(σ) = ε.

As mentioned earlier in the introduction, we are interested in selecting an observation
mask M such that certain properties hold, these include, among other properties, observ-
ability, normality, and diagnosability. Given a system G, an observation mask M , and a
language K ⊆ Σ∗:

5



• K is said to be observable with respect to G and M if

∀s, t ∈ pr(K), σ ∈ Σ : M(s) = M(t), sσ ∈ pr(K), tσ ∈ L(G)⇒ tσ ∈ pr(K)

where pr(K) = {s ∈ Σ∗ | ∃t ∈ Σ∗ s.t. st ∈ K} is the set of all prefixes of event traces
in K.

• K is said to be normal with respect to G and M if

∀s, t ∈ L(G) : s ∈ pr(K), t ∈ L(G),M(s) = M(t)⇒ t ∈ pr(K).

Next we give the definition of diagnosability as in [16]. Let G be a non-terminating
(or dead-lock free) system, F = {Fi, i = 1, 2, . . . ,m} be a set of failure types, and ψ : Σ →
F∪{∅} be a failure assignment function for each event in Σ. G is said to be diagnosable with
respect to the observation mask M and the failure assignment function ψ if the following
holds:

(∀Fi ∈ F) (∃ni ∈ N) (∀s ∈ L(G), ψ(sf ) = Fi) (∀v = st ∈ L(G), ||t|| ≥ ni)
⇒ (∀w ∈ L(G),M(w) = M(v)) (∃u ∈ pr({w}), ψ(uf ) = Fi)

where sf and uf denote the last events in traces s and u respectively, pr({w}) is the set of
all prefixes of w. In [7], the notion of diagnosability is extended to the cases of repeated
failures.

All the above properties, i.e., observability, normality, and diagnosability, can be tested
in polynomial time in the size of the system. For the test of the diagnosability, we can
use the algorithm presented in [7] (instead of the one in [6]), which does not require the
non-existence of cycles of unobservable events in the system.

In the following, we introduce the definition of an observer ([19]) for an observation mask,
which is useful in this paper. Given a system G and an observation mask M , M is said to
be an observer if

∀s, t ∈ L(G) : M(s) = M(t)⇒ [∀su ∈ L(G),∃tv ∈ L(G), s.t. M(v) = M(u)].

Note that in the above definition of an observer we only consider the observation mask, and
not the more general report map as in [19].

3 Optimal Sensor Selection Problem & its Complexity

In this section, we formulate the optimal sensor selection problem and study its complex-
ity. From the definitions of the properties such as observability, normality, and diagnosability,
we know that whether or not a property holds for a given observation mask M , depends on
the partition CM induced by M , and it has nothing to do with the set ∆ itself. Thus, we
can give the following definition.

Definition 1 Given an event set Σ and a property P over Σ, let I denote the collection of
input specifications for the property P other than an observation mask (such as a system
G, a control specification K, a failure assignment function ψ, etc.). Let CΣ be the set of
all partitions of Σ, then for a partition C ∈ CΣ, the property P is said to hold under the
partition C, denoted < I,C >|= P , if P holds under the observation mask MC induced by
the partition C.

6



We use CP ⊆ CΣ to denote the set of all partitions under each of which P holds, i.e.,
CP = {C ∈ CΣ | < I,C >|= P}.

Next we give the definition of an optimal observation mask.

Definition 2 Let Σ be an event set, M be an observation mask, and P be a property, M is
said to be optimal for the property P if CM is a minimum in CP , where CM is the partition
induced by M .

The problem of selecting an optimal sensor set is stated as follows:

Given an event set Σ and a property P find an optimal observation mask M over
Σ for the property P .

The above problem is a search problem over the set of all observation masks CΣ. The
decision version of this search problem can be stated as follows.

OPTIMAL-SENSOR-EXISTENCE
INSTANCE: An event set Σ and a property P over Σ.
QUESTION: Does there exist an optimal observation mask M for P?

In the following we show that the OPTIMAL-SENSOR-EXISTENCE problem is NP-
hard ([4]) in the size of the event set. Then it follows directly that the optimal sensor
selection problem is NP-hard in the size of the system events.

Theorem 1 OPTIMAL-SENSOR-EXISTENCE is NP-hard.

Proof: The NP-hardness of OPTIMAL-SENSOR-EXISTENCE is established by the re-
duction from the SATISFIABILITY problem (a known NP-complete problem).

Let φ be a boolean formula over n variables, V = {vk, 1 ≤ k ≤ n}, in the conjunctive
normal form (CNF) consisting of m clauses:

φ =
m
∧

i=1

li
∨

j=1

uij; uij = vk or ¬vk for some k ∈ {1, · · · , n},

where li ≤ n is the number of variables in the ith clause. A truth assignment for V is a
function f : V → {0, 1}. φ is said to be satisfiable if there exists a truth assignment f such
that

φ|f =





m
∧

i=1

li
∨

j=1

wij



 = 1; where wij = f(vk) if uij = vk, and wij = ¬f(vk) if uij = ¬vk,

i.e., φ is TRUE under the truth assignment f . The SATISFIABILITY problem ([4]) is spec-
ified as follows.

SATISFIABILITY
INSTANCE: A variable set V and a boolean formula φ over V in CNF.
QUESTION: Is φ satisfiable?

From an instance (V, φ) of SATISFIABILITY, we construct an instance (Σφ, Pφ) of
OPTIMAL-SENSOR-EXISTENCE as follows (see the example given below for illustration):

7



• The event set is defined as

Σφ = {e | e = uij, i = 1, · · · ,m, j = 1, · · · , li} ∪ V,

where we treat uij and vk as two different events even if uij = vk.

Prior to defining the property Pφ, we first show that there exists a property φ̂ defined

over the variables of the set Σφ such that φ̂ is satisfiable if and only if φ is satisfiable.

Definition of φ̂:

φ̂ := φ∧
∧

(v∈V,Ev 6=∅)

[(v∧
∧

e∈Ev

e)∨(¬v∧
∧

e∈Ev

¬e)]∧
∧

(v∈V,E¬v 6=∅)

[(v∧
∧

e∈E¬v

¬e)∨(¬v∧
∧

e∈E¬v

e)],

where Ev = {e ∈ Σφ − V | e = v} and E¬v = {e ∈ Σφ − V | e = ¬v}.

To see that φ̂ is satisfiable if and only if φ is satisfiable, let f1 be a truth assignment for V
with φ|f1

= 1, then we can extend f1 to a truth assignment f2 for Σφ as follows: ∀e ∈ Σφ,

f2(e) =











f1(e) if e ∈ V
f1(v) if (e ∈ Σφ − V ) ∧ (v ∈ V ) ∧ (e = v)
¬f1(v) if (e ∈ Σφ − V ) ∧ (v ∈ V ) ∧ (e = ¬v)

It can be verified that φ̂|f2
= 1. Conversely, for a truth assignment f2 for Σφ with φ̂|f2

= 1,
we can obtain a truth assignment f1 for V by restricting f2 on V ⊆ Σφ, i.e., f1 = f2|V . Then
it is obvious that φ|f1

= 1.
We next show that given an observation mask M over Σφ, it induces a truth assignment

function fM over the symbols of Σφ.

Definition of fM induced by M : We first arrange the events in Σφ in the following order:

e1 = v1, · · · , en = vn, en+1 = u11, · · · , en+l1 = u1l1 , · · · , e(n+
∑m

i=1
li)

= umlm ,

and given an observation mask M over Σφ, iteratively define the truth assignment
function fM : Σφ → {0, 1} as:

fM(e1) =

{

1 if M(e1) 6= ε

0 otherwise

fM(ek) =

{

fM(ek−1) if M(ek) = M(ek−1)
¬fM(ek−1) otherwise

}

, k = 2, · · · , |Σ|

We now use the boolean formula φ̂ and the truth assignment function fM to define the
property Pφ.

• We define Pφ to be the property over Σφ such that it is satisfied under an observation

mask M if and only if the boolean formula φ̂ is satisfied under the truth assignment
fM , i.e., φ̂|fM = 1.

8



It is easy to verify that the size of Σφ is O(m×n), and the length of φ̂ is O(|φ|+m×n).
Also, the complexity of construction of fM from M is polynomial in the size of Σφ. It follows
that given an instance of the satisfiability problem, an instance of an optimal sensor existence
problem can be constructed polynomially in the size m and n of the satisfiability problem
specification.

Next we prove that φ is satisfiable if and only if there is an optimal observation mask
for the property Pφ defined above. Since Σφ is finite, we know that there is an optimal
observation mask for the property Pφ if and only if CPφ 6= ∅, i.e., if and only if there is an
observation mask M such that Pφ is satisfied under M , i.e., if and only if the following holds

∃M, φ̂|fM = 1.

From the definition of φ̂, it follows that φ is satisfiable if and only if φ̂ is satisfiable. Thus
we only need to prove that φ̂ is satisfiable if and only if there exists an observation mask M
such that φ̂ is TRUE under fM , i.e.,

(∃f : Σφ → {0, 1} s.t. φ̂|f = 1)⇐⇒ (∃M s.t. φ̂|fM = 1).

The implication from the right to the left follows directly from the fact that fM is a truth
assignment for Σφ. For the implication from the left to the right, it suffices to show that
from a truth assignment f for Σφ, an observation mask Mf for Σφ with fMf = f can be
constructed. Assuming the events in Σφ are in the same order as in the above definition of
fM , then the mask Mf can be constructed iteratively from f as follows:

Mf (e1) =

{

e1 if f(e1) = 1
ε otherwise

}

Mf (ek) =

{

Mf (ek−1) if f(ek) = f(ek−1)
ek otherwise

, k = 2, · · · , |Σ|

It is easy to verify that fMf = f . This completes the proof.
The above theorem states that unless P = NP , it is not possible to obtain a polynomial

algorithm in the size of the event set for the selection of optimal sensors for satisfying a
general property of observation masks.

The following example illustrates the construction of an instance of the optimal sensor
existence problem from that of the SATISFIABILITY problem.

Example 1 Let (V, φ) be an instance of the SATISFIABILITY problem, where

V = {v1, v2, v3}

φ = (v1 ∨ v2) ∧ (v1 ∨ v3) ∧ (v2 ∨ ¬v3)

Using new symbols uij, φ can be expressed as

φ = (u11 ∨ u12) ∧ (u21 ∨ u22) ∧ (u31 ∨ u32),

with u11 = u21 = v1, u12 = u31 = v2, u22 = v3, and u32 = ¬v3. An instance (Σφ, Pφ) of the
optimal sensor existence problem is constructed from (V, φ) as:

9



• Σφ = {v1, v2, v3, u11, u12, u21, u22, u31, u32};

• The property Pφ over Σφ is defined such that it holds under an observation mask M

over Σφ if and only if the statement “φ̂|fM = 1”, where

φ̂ = φ ∧ [(v1 ∧ u11 ∧ u21) ∨ (¬v1¬u11 ∧ ¬u21)]

∧[(v2 ∧ u12 ∧ u31) ∨ (¬v2¬u12 ∧ ¬u31)]

∧[(v3 ∧ u22) ∨ (¬v3 ∧ ¬u22)]

∧[(v3 ∧ ¬u33) ∨ (¬v3 ∧ u33)]

and fM is obtained from M as in the proof of Theorem 1.

Suppose a mask M is given as: M(v1) = M(v2) = M(v3) = w1, M(u11) = M(u12) =
M(u32) = ε, M(u21) = w2, and M(u22) = M(u31) = w3, where wi 6= ε (i = 1, 2, 3) are
different from each other. Then fM is constructed as (assuming the events in Σφ are in
the order as listed above): fM(v1) = fM(v2) = fM(v3) = 1, fM(u11) = fM(u12) = 0,
fM(u21) = 1, fM(u22) = fM(u31) = 0, and fM(u32) = 1. It is easy to verify that φ̂|fM = 0,
i.e., Pφ is not satisfied under M .

Now suppose M is given as: M(v1) = M(u12) = w1, M(v2) = M(v3) = w2, M(u11) =
M(u21) = M(u32) = ε, and M(u22) = M(u31) = w3, where wi 6= ε (i = 1, 2, 3) are different
from each other. Then fM is obtained as: fM(v1) = fM(u11) = fM(u21) = fM(u32) = 1 and
fM(v2) = fM(v3) = fM(u12) = fM(u22) = fM(u31) = 0. It can be verified that φ̂|fM = 1,
i.e., Pφ is satisfied under M .

4 Optimal Sensor Selection Under Mask-Monotonicity

We next introduce the notion of mask-monotonic properties, and show that for such
properties the complexity of optimal sensor selection problem is polynomial in the size of the
event set, and also provide two algorithms of polynomial complexity for computing optimal
sensor sets.

Definition 3 Given a property P , P is said to be mask-monotonic if

∀C1, C2 ∈ CΣ, (C1 ≤Σ C2) ∧ (< I,C1 >|= P )⇒ (< I,C2 >|= P ).

The mask-monotonicity simply states that the property P is preserved under an increase
in events observation information. It can be verified that the properties of observability,
normality, and diagnosability are mask-monotonic. The following example shows that the
property of observer-ness is not mask-monotonic.

Example 2 Consider the system G shown in Figure 1, where Σ = {a1, a2, b1, b2}. Let M1

and M2 be two observation masks such that

M1(a1) = M1(a2) = a 6= ε, M1(b1) = M1(b2) = b 6= ε;

M2(a1) = M2(a2) = a 6= ε, M2(b1) = b1,M2(b2) = b2.

10



a
1

q2

q0 q1

q 3b
1

a2

b2

Figure 1: Observer-ness is not ≤Σ-monotonic

Then the partitions CM1 and CM2 that are induced by M1 and M2 respectively can be
obtained as

CM1 = {{a1, a2}, {b1, b2}, {ε}};

CM2 = {{a1, a2}, {b1}, {b2}, {ε}}.

It is obvious that CM1 ≤Σ CM2 . It is also easy to verify that M1 is an observer and M2 is
not an observer. This is because M2(a1) = M2(a2), a1b1 ∈ L(G), and there does not exist a
trace u ∈ Σ∗ such that

a2u ∈ L(G) ∩M−1
2 M2(a1b1) = L(G) ∩ {a1b1, a2b1} = {a1b1}.

Thus, the property of observer-ness is not mask-monotonic. Also note that in the above
example, we have that the identity mask M3 = Id (that masks every event to itself), is
an observer, and CM2 ≤Σ CM3 . Thus, we can find an observer mask M3 by refining a
non-observer mask M2.

The following theorem presents some properties of the set CP when P is mask-monotonic.

Theorem 2 Let Σ be an event set, CΣ be the set of all partitions of Σ, P be a mask-
monotonic property, and CP be the set of all partitions under which P holds. Then we
have:

1. CP 6= ∅ ⇐⇒ C
ge

Σ
∈ CP

2. supCP =

{

C
ge

Σ
if CP 6= ∅

C le
Σ

otherwise

3. ∀C ∈ CP 6= ∅: infCP ≤Σ C ≤Σ C
ge

Σ
, where infCP may not be in CP , i.e., the least

element of CP may not exist.

Proof: For the first assertion, the forward implication comes from the mask-monotonicity
of P , and the backward implication is obvious.

For the second assertion, if CP 6= ∅ then from the first assertion we have supCP = C
ge

Σ
;

otherwise supCP = sup∅. From the definition of supremum, we know that sup∅ is the least
element of CΣ, i.e., sup∅ = C le

Σ
.

11



The first part of the third assertion follows directly from the second assertion and the
definitions of infimum and supremum. Since P is mask-monotonic, it is easy to verify that
infCP ∈ CP if and only if it holds that,

C1, C2 ∈ C
P ⇒ inf{C1, C2} ∈ C

P .

In general, the above does not hold for a property P . (For example, this does not hold for
observability.) This implies that infCP may not be in CP , i.e., the least element of CP may
not exist. This completes the proof.

From Definition 2, we know that the optimal sensor selection problem is to find a mini-
mum partition in CP . Noting the fact of Theorem 2 that ∀C ∈ CP , infCP ≤Σ C ≤Σ C

ge

Σ
, we

have two methods to find a minimum partition in CP :

Top-down method: Starting from C0 = C
ge

Σ
, recursively find a partition Ci+1, with i ≥ 0,

satisfying [Ci+1 ≤
1
Σ
Ci]∧ [Ci+1 6= Ci]∧ [< I,Ci+1 >|= P ], until none can be found; then

the partition obtained is a minimum.

Bottom-up method: Starting from C0 = infCP , recursively find a partition Ci+1, with
i ≥ 0, satisfying [Ci ≤

1
Σ
Ci+1] ∧ [Ci+1 6= Ci], until < I,Ci+1 >|= P ; next apply the

top-down method to the partition obtained.

Remark 1 The top-down search method is self-explanatory, but the bottom-up search
method deserves further explanation. The first part of the bottom-up method is for finding
a partition C ∈ CP starting from infCP . Although the property P holds under this partition
C, C may not be a minimum in CP , and so we need to apply the top-down method from
this partition C for finding a minimum in CP .

The following examples illustrates this further.

Example 3 Suppose Σ = {a, b, c}, and for an observation mask of Σ, the property P is
defined as the statement “the partition CM of Σ induced by M is finer than either C3 or
C4”, where C3 = {{a, b}, {c, ε}} and C4 = {{a, c}, {b, ε}}. It is obvious that P is mask-
monotonic; CP 6= ∅; C3 and C4 are two minimums in CP ; and infCP = {{a, b, c, ε}}. For
finding a partition in CP starting from C0 = infCP , first since a is not masked to ε in both
C3 and C4, we obtain C1 = {{a}, {b, c, ε}} which is not in CP ; and next since b has a different
masked value from c in both C3 and C4, we obtain C2 = {{a}, {b}, {c, ε}}. Since C3 ≤Σ C2,
C2 is in CP . But C2 is not a minimum in CP . Thus, we need to use the top-down method for
finding a minimum starting from C2, from which C3 is obtained finally. The above situation
is shown in Figure 2, where C0 → C1 → C2 ← C3 is the path we searched.

In the following, we describe these two different methods. Given an event set Σ and
a property P over Σ, the top-down method is given next. The algorithm starts from the
least-upper-bound of all the adequate partitions of the set Σ, which is the partition in which
all equivalence classes are singleton. It then iteratively searches over all one-step coarser
partitions in a “depth-first” manner until a partition is found such that all one-step coarser
partition of it violate the property P .

12



C Σ

C i C j

C2 C
P

C i Σ
C j

3C C4C1

C0 = inf C
P

� �� � �� �

� ��

� �� �

� �	


 
� � �
 
 :

Figure 2: Illustrating the bottom-up method

Algorithm 1 Top-down algorithm for finding a minimum partition in CP

1. Initialization: i = 0, C0 = C
ge

Σ
= {{σ} | σ ∈ Σ}, and label each pair X,Y ∈ C0

as “unsearched”. If < I,C0 >6|= P then stop and output that “no minimum exists”;
otherwise continue to the next step.

2. If there does not exist an unsearched pair X,Y ∈ Ci, then stop and output Ci as a
minimum in CP ; otherwise pick an unsearched pair X,Y ∈ Ci and set Ĉ = (Ci −
{X,Y }) ∪ {X ∪ Y } and check whether < I, Ĉ >|= P . If NO, then label the pair
X,Y ∈ Ci as searched and go to Step 2; else go to the next step.

3. Set Ci+1 = Ĉ, and for all Z ∈ Ci+1 − {X ∪ Y }, label the pair X ∪ Y, Z ∈ Ci+1 as
searched if either the pair X,Z ∈ Ci or the pair Y, Z ∈ Ci is labeled searched; labels
of all other pairs in Ci+1 are retained from those in Ci. Set i = i+ 1 and go to Step 2.

Remark 2 Since the number of initial “unsearched” pairs in C0 = C
ge

Σ
is O(|Σ|)2, and the

number of pairs as well as the number of unsearched pairs monotonically decreases, the worst
case complexity of Algorithm 1 is O(|Σ|2 × TP ), where TP is the complexity of checking the
property P , which we assume to be polynomial in the size of the system and any other
specification involved. (For properties such as observability, normality, and diagnosability,
the polynomiality of TP is known. Thus, Algorithm 1 is polynomial in number of events and
states for such properties.) It also follows that if the search for an optimum is restricted to
over the set of projection masks, then the number of initial “unsearched pairs in C0 = C

ge

Σ
is |Σ|, and so the complexity of the algorithm is O(|Σ| × TP ), which is linear in the size of
the events set.

It is obvious that if Algorithm 1 outputs “no minimum exists”, if and only if CP is empty.
On the other hand, if Algorithm 1 generates a partition, the following theorem shows that
the partition is a minimum in CP .

13



Theorem 3 Algorithm 1 generates a minimum in CP whenever CP 6= ∅.

Proof: Since initially C0 is a partition, it is obvious that C1 constructed in Algorithm 1 is
also a partition. From Algorithm 1, we know that if CP 6= ∅, then a solution obtained by
the algorithm must be in CP . Thus, we only need to show that the solution obtained is a
minimum in CP .

Now let Cmin be a solution generated by Algorithm 1, suppose there exists another
C ∈ CP such that C ≤Σ Cmin and C 6= Cmin, i.e., S = {C ∈ CP | [C ≤Σ Cmin] ∧ [C 6=
Cmin]} 6= ∅. Let Cmax be a maximum in S. Since S is non-empty and finite, a maximum
does exist. From the mask-monotonicity of P , we know that Cmin must be one step finer
than Cmax, i.e., Cmax ≤

1
Σ
Cmin. It implies that there exists X and Y in Cmin such that

Cmax = (Cmin−{X,Y })∪{X ∪ Y }. But since Cmin is a solution generated by Algorithm 1,
there does not exist such a Cmax after the algorithm stops at the solution Cmin. Thus, we
must have that S = ∅, i.e., Cmin is a minimum in CP .

Next we develop the bottom-up method for finding a minimum in CP . For this, we need
to first compute infCP . We assume from now that < I,C

ge

Σ
>|= P so that CP 6= ∅ and

infCP is non-trivial. The idea behind the computation of infCP is simple: Suppose P is
satisfied by making a pair σ1, σ2 ∈ Σ indistinguishable, i.e., < I,C(1,2) >|= P , where

C(1,2) := {{σ} | σ ∈ Σ− {σ1, σ2}} ∪ {σ1, σ2},

then σ1 and σ2 belong to the same equivalence class in infCP since C(1,2) ∈ C
P , and so

by definition, infCP ≤ C(1,2). The algorithm is described below. For an illustration of the
algorithm, please refer to Section 6.

Algorithm 2 Algorithm for computing infCP

1. Initialization: Cinf = ∅, label all pairs σ1, σ2 ∈ Σ as unsearched, and set Y = Σ.

2. Check if Y = ∅. If YES, then set infCP = Cinf ; otherwise pick σ0 ∈ Y and set
X = {σ0}.

3. Check if there exists an unsearched pair σ1 ∈ X and σ2 ∈ Y − X. If NO, then set
Cinf = Cinf ∪ {X}, Y = Y − X, and go to Step 2; otherwise label the pair σ1, σ2 as
searched, and check if < I,C(1,2) >|= P . If YES, then set X = X ∪ {σ2}. Repeat
Step 3.

Remark 3 Since Algorithm 2 searches each event pair at most once, its worst case complex-
ity is O(|Σ|2 × TP ), where TP is the complexity of checking the property P . It also follows
that if the search for an optimum is restricted to over the set of projection masks, then the
complexity of the algorithm is O(|Σ| × TP ), which is linear in the size of the events set.

The following theorem shows that Algorithm 2 is correct.

Theorem 4 Cinf computed by Algorithm 2 equals infCP .

14



Proof: From the construction of Cinf , we know that Cinf is a partition of Σ. We first prove
that Cinf ≤Σ C for every C ∈ CP , i.e., ∀C ∈ CP and ∀X ∈ C, there exists Y ∈ Cinf such
that X ⊆ Y . If X is a singleton, i.e., X = {σ} for some σ ∈ Σ, then obviously there exists
Y ∈ Cinf such that σ ∈ Y , and so X ⊆ Y . If X is not a singleton, then pick σ1 ∈ X. Then
for all σ2 ∈ X with σ2 6= σ1, C ≤Σ C(1,2), where C(1,2) = {{σ} | σ ∈ Σ−{σ1, σ2}}∪{{σ1, σ2}}.
It follows from mask-monotonicity and the assumption C ∈ CP that C(1,2) ∈ C

P . Form the
construction of Cinf we know that Cinf ≤Σ C(1,2), and so there exists a Y ∈ Cinf such that
X ⊆ Y .

Next we prove that there does not exist a partition CInf such that CInf ≤Σ C for every
C ∈ CP , Cinf ≤Σ CInf , and CInf 6= Cinf . For contradiction, we suppose that there exists
such a partition CInf . Then we must have: ∃σ1, σ2 ∈ Σ, ∃X ∈ Cinf , and ∃Y1, Y2 ∈ CInf

such that σ1 6= σ2, {σ1, σ2} ⊆ X, σ1 ∈ Y1, σ2 ∈ Y2, and Y1 6= Y2. It further implies that
C(1,2) ∈ C

P but CInf 6≤Σ C(1,2), a contradiction. Thus, no such a partition CInf exists. This
completes the proof.

Now we present our bottom-up method for computing a minimum in CP that starts from
infCP , and iteratively obtains a one-step refinement until a mask under which P holds is
found, and finally applies the top-down method starting from that mask.

Algorithm 3 Bottom-up algorithm for finding a minimum partition in CP

1. Initialization: Ĉ0 = infCP , i = 0.

2. Check whether < I, Ĉi >|= P . If YES, then go to Step 3; otherwise from the test for
P , a counter example consisting of a pair of indistinguishable event traces is generated,
and by distinguishing certain two events σ1 and σ2 in some equivalence class of Ĉi, we
can make this counter example non-existent. So there existsX ∈ Ĉi with {σ1, σ2} ⊆ X.
Set Ĉi+1 = (Ĉi − {X}) ∪ {X − {σ1}} ∪ {{σ1}}, and repeat Step 2 with i = i+ 1.

3. Apply Algorithm 1 with C0 = Ĉi.

Remark 4 It is easy to verify that the worst case complexity of Algorithm 3 is also O(|Σ|2×
TP ), where TP is the complexity of checking the property P . It also follows that if the search
for an optimum is restricted to over the set of projection masks, then the complexity of the
algorithm is O(|Σ| × TP ), which is linear in the size of the events set.

The following theorem guarantees the correctness of Algorithm 3.

Theorem 5 The partition generated by Algorithm 3 is a minimum of CP .

Proof: It is easy to verify that in Algorithm 3, Ĉi ≤Σ Ĉi+1 and Ĉi 6= Ĉi+1. Since CP 6= ∅, and

CΣ is finite, we know that Step 2 of Algorithm 3 terminates by finding a Ĉi ∈ C
P . Further

following the proof of Theorem 3, it can be seen that starting from any initial partition
C0 ∈ C

P , Algorithm 1 generates a minimum of CP , and so Step 3 of Algorithm 3 generates
a minimum of CP . This completes the proof.

Remark 5 In the above analysis, we have implicitly assumed that any two events can have
a same masked value, i.e., any two events can share a same sensor. However, this may not be

15



true in practical situations. In some applications, we may need to find an optimal solution
that is feasible, i.e., a solution satisfying the feasibility specification which specifies the sets
of events that can share a sensor. In order to find such a feasible solution, the top-down and
bottom-up algorithms are modified in the following.

We first introduce the notion of feasible partitions. Let Sf ∈ CΣ be a partition of Σ that
denotes the feasibility specification: For any X ⊆ Σ, all events in X are permitted to be
indistinguishable if ∃Y ∈ Sf such that X ⊆ Y . Let X ⊆ Σ, X is said to be feasible with
respect to Sf if either ε ∈ X or ∃Y ∈ Sf such that X ⊆ Y . Let C ∈ CΣ be a partition of Σ,
C is said to be feasible with respect to Sf if ∀X ∈ C, X is feasible with respect to Sf .

To restrict search over feasible partitions of Σ, Algorithm 1 may be modified as follows:
In Step 2, only those unsearched pairs X,Y with X ∪ Y being feasible shall be picked. It
can then be verified that if the initial partition is feasible, then whenever the Algorithm 1
can output a partition, it will output a feasible one. It is obvious that the initial partition
C0 = C

ge

Σ
in Algorithm 1 is feasible with respect to any Sf ∈ CΣ. Also, it can be proved that

if a partition Ci is computed by the above modified algorithm, then no feasible partition
coarser than Ci exists, i.e., Ci is an optimal feasible partition.

Also, Algorithm 3 may be modified as follows: In Step 3, the modified Algorithm 1 shall
be used, and further instead of choosing C0 = Ĉi, the partition C0 shall be chosen as:

Ĉ
Sf

i = {Xε} ∪ {X1 ∩X2 | X1 ∩X2 6= ∅, X1 ∈ Ĉi − {Xε}, X2 ∈ Sf},

where Xε ∈ Ĉi with ε ∈ Xε. It can be verified that Ĉ
Sf

i is a feasible partition finer than Ĉi,

which implies that < I, Ĉ
Sf

i >|= P from the monotonicity of P . From the argument about
the modified Algorithm 1, we can know that whenever the modified Algorithm 3 can output
a partition, it will output an optimal feasible one.

5 Sequential test of Mask-Preserving Properties

Recall that the complexity of both top-down and bottom-up algorithms is O(|Σ|2× TP ),
where TP is the complexity of checking P for a given observation mask. It is known that TP

is polynomial in the number of system states for a variety of properties of interest. Thus,
the complexity of checking P can be improved when

• it is possible to reduce the state size of the system such that

• the reduced system satisfies the property P if and only if the original system satisfies
the property P .

From the work in [18], it is possible to reduce the state size via a projection mask whenever
the observation mask is an observer, and we next introduce the notion of mask-preserving

properties such that the reduced system satisfies P if and only if the original system satisfies
P .

In Algorithm 1, for each Ci+1 we need to test whether < I,Ci+1 >|= P given that
< I,Ci >|= P holds. Let MCi+1

and MCi
be the observation masks induced by Ci+1 and

Ci respectively, then there exists a mask Mi+1 such that MCi+1
= Mi+1 ◦ MCi

(here the

16



operation “◦” is defined as: for any event e, MCi+1
(e) = Mi+1 ◦MCi

(e) = Mi+1(MCi
(e))),

and let CMi+1
be the associated equivalence class. We can check < I,Ci+1 >|= P by checking

whether < MCi
(I), CMi+1

>|= P if P has the property of “mask-preserving” which is defined
as follows.

Definition 4 Given observation masks M1,M2,M = M2 ◦ M1, we say that P is mask-
preserving if it holds that

< I,CM1
>|= P ⇒ [[< I,CM >|= P ]⇔ [< M1(I), CM2

>|= P ]].

It follows from the definition of mask-preserving properties that < I,CM >|= P can be
checked by checking < M1(I), CM2

>|= P , where M = M2 ◦M1. So whenever M1 is an
observer for I, the state size of M1(I) will be smaller than I, lending to a computational
saving in verifying < I,CM >|= P . Next, we first show that the property of normality is
mask-preserving, and then present an algorithm for checking whether a given observation
mask is an observer. In [20], there is an algorithm for testing the observer property with a
worst case complexity of O(|Q|5×|Σ|), where |Q| is the number of states in the system. Our
test for the observer property has a complexity of O(|Q|4 × |Σ|2).

Theorem 6 Consider a system G, an observation mask M = M2 ◦ M1, and a language
K ⊆ L(G). Suppose that K is normal with respect to G and M1, then K is normal with
respect to G and M if and only if M1(K) is normal with respect to M1(G) and M2.

Proof: We first prove the necessity. From [8], we know that K is normal with respect to G
and M if and only if

M−1M(pr(K)) ∩ L(G) = pr(K).

Using M = M2 ◦M1, it follows that

M−1
1 M−1

2 M2M1(pr(K)) ∩ L(G) = pr(K).

Applying M1 on both sides yields

M1[M
−1
1 M−1

2 M2M1(pr(K)) ∩ L(G)] = M1(pr(K)).

It can be verified easily that for any languages L1 and L2 over the event set Σ,

M1(M
−1
1 (L1) ∩ L2) = L1 ∩M1(L2).

Thus we have
M−1

2 M2M1(pr(K)) ∩M1(L(G)) = M1(pr(K)).

Using the fact that masking and prefix-closure operations commute, the above equation can
be rewritten as:

M−1
2 M2(pr(M1(K))) ∩ L(M1(G)) = pr(M1(K)).

This establishes the necessity.
For sufficiency, suppose M1(K) is normal with respect to M1(G) and M2, i.e.,

M−1
2 M2(pr(M1(K))) ∩ L(M1(G)) = pr(M1(K)).

17



Then by applying M−1
1 operation on both sides and taking an intersection with L(G) we

have,

M−1
1 [M−1

2 M2(pr(M1(K))) ∩ L(M1(G))] ∩ L(G) = M−1
1 [pr(M1(K))] ∩ L(G).

By using the facts that M−1
1 (L1 ∩ L2) = M−1

1 (L1) ∩M
−1
1 (L2) and L(M1(G)) = M1(L(G)),

and by applying the commutativity of masking and prefix-closure operations, we get

M−1
1 M−1

2 M2M1(pr(K)) ∩M−1
1 M1(L(G)) ∩ L(G) = M−1

1 M1(pr(K)) ∩ L(G),

which can be simplified as

M−1
1 M−1

2 M2M1(pr(K)) ∩ L(G) = M−1
1 M1(pr(K)) ∩ L(G).

Finally since K is normal with respect to G and M1, the right hand side equals pr(K), i.e.,

M−1
1 M1(pr(K)) ∩ L(G) = pr(K).

So it follows that
M−1

1 M−1
2 M2M1(pr(K)) ∩ L(G) = pr(K).

Thus K is normal with respect to G and M .
The following algorithm provides an O(|Q|4×|Σ|2) test for checking the observer property.

Algorithm 4 Algorithm for testing observer-ness for system G = (Q,Σ, R, q0) and mask
M

1. Construct G1 = (Q1,∆, R1, q
1
0) from the “masked synchronous composition” of G with

itself as follows:

• Q1 = Q×Q is the state set;

• ∆ is the event set;

• R1 ⊆ Q1 × (∆ ∪ {ε})×Q1 is the state transition set that is defined as:
for all q12 = (q1, q2) and q′12 = (q′1, q

′
2) in Q1, and for all τ ∈ ∆, (q12, τ, q

′
12) ∈ R1 if

and only if one of the following holds

– τ = ε, q1 = q′1 (resp., q2 = q′2), and ∃σ ∈ Σ such that M(σ) = ε and
(q2, σ, q

′
2) ∈ R (resp., (q1, σ, q

′
1) ∈ R);

– τ 6= ε, and ∃σ1, σ2 ∈ Σ such that M(σ1) = M(σ2) = τ , (q1, σ1, q
′
1) ∈ R, and

(q2, σ2, q
′
2) ∈ R.

• q1
0 = (q0, q0) is the initial state.

2. Check in G1 whether there exists a state q12 = (q1, q2) ∈ Q1 such that it is reachable
from q1

0 and the following holds:

Exists σ ∈ Σ such that either (q1, σ, q
′
1) ∈ R or (q2, σ, q

′
2) ∈ R, but there does

not exist a q′12 ∈ Q1 with (q12,M(σ), q′12) ∈ R1.

18



If the answer to this check is YES, then M is not an observer for G; otherwise M is
an observer for G.

The correctness of Algorithm 4 follows directly from the definition of an observer given in
Section 2.

Theorem 7 Given a system G and an observation mask M , M is an observer for G if and
only if Algorithm 4 does not answer YES.

Proof: It follows from the construction of G1 that a state q12 = (q1, q2) ∈ Q1 is reachable
from q1

0 if and only if there exist s, t ∈ L(G) such that M(s) = M(t) and execution of s (resp.,
t) in G results in state q1 (resp., q2). So if the Algorithm answers YES, there exists either
sσ ∈ L(G) but no σ′ ∈ M−1M(σ) with tσ′ ∈ L(G), or tσ ∈ L(G) but no σ′ ∈ M−1M(σ)
with sσ′ ∈ L(G). In either case, the observer property is violated. On the other hand, if
the observer property is violated, we must have s, t ∈ L(G) with M(s) = M(t), and σ ∈ Σ
such that either sσ ∈ L(G) but no σ′ ∈ M−1M(σ) with tσ′ ∈ L(G), or tσ ∈ L(G) but no
σ′ ∈M−1M(σ) with sσ′ ∈ L(G). In either case, the Algorithm answers YES.

Remark 6 Since the number of states in G1 is O(|Q|2) and the number of transitions is G1

is O(|R|2), the complexity of Algorithm 4 is O(|Q|2+|R|2). Since G may be nondeterministic,
|R| is bounded by |Q|2 × |Σ|. So it follows that the worst case complexity of Algorithm 4 is
O(|Q|4 × |Σ|2).

Now we present an algorithm for the “sequential test” of a mask-preserving property. For
the sake of concreteness, we illustrate it via the sequential test for normality, and discuss
the resulting computational savings. Let G be a deterministic system, M = M2 ◦M1 be an
observation mask, K ⊆ L(G) be a language which is normal with respect to G and M1, and
H be a deterministic automaton that accepts the language K. Then we have the following
algorithm to test the normality of K with respect to G and M .

Algorithm 5 Algorithm for the sequential test of normality

1. Test whether M1 is an observer for both G and H by using Algorithm 4. If the answer
is NO, then test for the normality of K with respect to G and M , and stop; otherwise
continue to the next step.

2. Obtain deterministic automata G1 and H1 language equivalent to the nondeterministic
automata M1(G) and M1(H) respectively.

3. Test for the normality of M1(K) = L(H1) with respect to G1 and M2.

Remark 7 Let nH and nG be the number of states in H and G respectively. It can be
verified that the test for normality of L(H) with respect to G and M = M2 ◦ M1 has
a complexity of O(n4

H × nG × |Σ|
2). Also, the worst case complexity of Algorithm 5 is

O(n4
H × |Σ|

2 + n4
G × |Σ|

2 + n4
H × nG × |Σ|

2) when M1 is not an observer for both G and H.
Thus, there is no computational saving in the worst case by the use of Algorithm 5. But if
M1 is an observer for both G and H, then the complexity of Algorithm 5 is O(n4

H × |Σ|
2 +

n4
G×|Σ|

2 +n4
H1
×nG1

×|M1(Σ)|2). Since M1 is an observer, from [18] we have nH1
≤ nH and

nG1
≤ nG. Since, obviously, |M1(Σ)| ≤ |Σ|, there is some computational saving that results

from the usage of Algorithm 5.

19



6 Illustrative Example

In this section, we present a simple example to illustrate the concepts and algorithms
developed in this paper. Consider a traffic monitoring problem of a mouse that moves around
in maze of rooms, one of which is occupied by a cat. The maze, shown in Figure 3, consists of
four rooms connected by various one-way passages, and all passages, except the two passages

: observable

: unobservable

cat 1

2mouse
0 3

Figure 3: Mouse in a maze

connected to room 1, can have sensors installed to detect the motion of the mouse through
them. The cat always stays in room 1. The mouse is initially in room 0, and it can visit
other rooms by using the one way passages, and it never stays at one room forever. A failure
is said to have occurred if the mouse moves to the room where the cat stays. The task
is to decide what passages should have sensors installed such that by observing the sensor
signals, we are able to detect (within some finite delay) the occurrence of the failure, so that
the system becomes diagnosable. In the maze, two passages connecting same two rooms
may share a single sensor. When two passages share one sensor, we can know whether the
mouse has gone through one of them, but we cannot know exactly which passage the mouse
has gone through. Due to the feasibility requirement of the sensor selection (Remark 5),
we require that only those passages that connect the same two rooms may share a sensor.
Thus for example a passage connecting rooms 0 and 2 can not share a sensor with a passage
connecting rooms 2 and 3.

The above problem can be modeled as the following discrete event system shown in
Figure 4. G = (Q,Σ, R, q0), where Q = {qi, 0 ≤ i ≤ 3}, Σ = {o1, o2, o3, o4, u1, u2}, and

o2 o4

1
F

u1
u2

o3

q2

q0

o
1

q1

q 3

Figure 4: System model

the events u1 and u2 are always unobservable. Here the states represent the rooms, i.e.,

20



state qi indicates room i, i = 0, · · · , 3, and the events represent the passages connecting
different rooms. The correspondence of events and passages can be seen clearly from Figure 4.
F = {F1} is the failure type set, and the failure assignment function ψ is given as ψ(oi) = ∅
for i = 1, · · · , 4, ψ(u2) = ∅, and ψ(u1) = {F1}. The feasibility specification (Remark 5) is
given as Sf = {{o1, o2}, {o3, o4}}.

Since u1 and u2 are always unobservable, we only need to consider the event set Σm = {ε,
o1, o2, o3, o4}, and find a minimal and feasible partition of Σm so as the diagnosability
holds. We use P to denote the property of the diagnosability. For a partition C of Σm, the
diagnosability P is said to hold for the partition C, i.e., < I,C >|= P , if < I,Cu >|= P ,
where Cu is the partition of Σ induced by C, i.e., Cu = (C − {Xε}) ∪ {Xε ∪ {u1, u2}} with
ε ∈ Xε ∈ C. Let CP be the set of all partitions of Σm under which the diagnosability P holds.
From the algorithm for testing diagnosability given in [7], we know that C ge

Σm
= {{σ} | σ ∈

Σm} ∈ C
P , i.e., CP 6= ∅.

Here we use the bottom-up method, i.e., Algorithm 3, for finding an optimal observation
mask for the property of diagnosability.

We first compute infCP by using Algorithm 2. Initially, Cinf = ∅ and Y = Σm. Next, we
set X = {ε} by applying Step 2 of Algorithm 2. Then from Step 3 of Algorithm 2, we find
that for the pair (σ1 = ε, σ2 = o1), < I,C(1,2) >|= P . Thus we set X = {ε, o1} and repeat
Step 3. After repeating Step 3 for several times, we have X = Σm, Cinf = {X}, and Y = ∅.
Finally from Step 2, we have that infCP = {Σm}.

Next by applying Algorithm 3 and the test for diagnosability in [7] we can get a minimum
of CP . From Steps 1 and 2 of Algorithm 3, we first get a partition in CP . From the test
for diagnosability in [7], we know that < I, infCP >6|= P , and we find that o4 and ε should
be distinguishable from each other, i.e., the partition Ĉ1 = {{ε, o1, o2, o3}, {o4}} is obtained
first. Since < I, Ĉ1 > 6|= P , we next find that o2 and ε should be distinguishable from each
other, i.e., the partition Ĉ2 = {{ε, o1, o3}, {o4}, {o2}} is obtained next. Again < I, Ĉ2 >6|= P ,
and we further find that o3 and ε should be distinguishable from each other, i.e., the partition
Ĉ3 = {{ε, o1}, {o4}, {o2}, {o3}} is obtained; and < I, Ĉ3 >|= P . It is easy to verify that Ĉ3

is feasible with respect to Sf .
Then by applying Algorithm 1 from Step 3 of Algorithm 3, we find that we can merge

{ε, o1} and {o2} in Ĉ3 and obtain a minimum of CP as {{ε, o1, o2}, {o4}, {o3}}. Note that in
applying Algorithm 1, as stated in Remark 5, we should not consider the merger of {o2} with
either {o3} or {o4}. This is because both {o2, o3} and {o2, o4} are infeasible with respect
to Sf . The final optimal observation mask M is obtained as: M(u1) = M(u2) = M(o1) =
M(o2) = ε, M(o3) = o3, and M(o4) = o4.

To illustrate the example further, suppose that the two one-way passages connecting
rooms 0 and 2, as well as those connecting rooms 2 and 3, are replaced by one two-way
passages. Then the solution obtained above, namely, {{ε, o1, o2}, {o3}, {o4}} requires a sen-
sor to detect not only the movement of the mouse through the two-way passage connecting
rooms 2 and 3, but also the direction of the movement. Now suppose we are only interested
in a solution that only requires movement detection sensors, i.e., we should not distinguish
o1 from o2 and o3 from o4, then Algorithm 1 can be used for this purpose. In applying Algo-
rithm 1, initially we shall set C0 = {{ε}, {o1, o2}, {o3, o4}}, which captures the requirement
that we shall not distinguish o1 from o2 and o3 from o4. It is obvious that C0 is feasible.

21



From the test of diagnosability, we know that < I,C0 >|= P . From Algorithm 1, we can
find that no partition coarser than C0 and satisfying P exists. Thus, the optimal observation
mask M is obtained as: M(u1) = M(u2) = ε, M(o1) = M(o2) 6= ε, M(o3) = M(o4) 6= ε,
which only requires two movement detection sensors.

7 Conclusion

For discrete event systems under partial observation, the problem of optimal sensor se-
lection is studied in this paper. The goal is to come up with a set of sensors that provide
minimal yet sufficient events observation information that is adequate for the task at hand
such as estimation, diagnosis, or control. We have taken a general approach to the prob-
lem of selecting an optimal sensors so that it can be adapted to a variety of applications
such as those characterized by the formal properties of (co-)observability, normality, state-
observability with or without delay, diagnosability of single or repeated failures, invertibility,
etc. Also, we consider the optimization over the set of general non-projection observation
masks.

We show that the optimal sensor selection problem is NP-hard in general. We identify a
key property of mask-monotonicity with respect to increasing precision of the events observa-
tion mask, which lets us compute an optimal sensor set in complexity that is quadratic in the
size of the events set. Two methods of such complexity for computing an optimal sensor set
are presented: A bottom-up (resp. top-down) method that starts from the greatest-lower-
bound (resp., least-upper-bound) and searches up (resp., down) the chain of the sensor sets.
We identify the least-upper-bound as well as the greatest-lower-bound for the set of all ade-
quate sensor sets, and provide algorithms of polynomial complexity for computing them. We
end the paper by introducing the notion of mask-preserving properties, which together with
the observer property allows for further computational savings. We show that the normality
is mask-preserving, and also present an algorithm of polynomial complexity for checking the
observer property.

References

[1] R. Cieslak, C. Desclaux, A. Fawaz, and P. Varaiya. Supervisory control of discrete
event processes with partial observation. IEEE Transactions on Automatic Control,
33(3):249–260, 1988.

[2] R. Debouk, S. Lafortune, and D. Teneketzis. On an optimization problem in sensor
selection. Journal of Discrete Event Dynamical Systems: Theory and Application, 1999.
Submitted.

[3] A. Degani, M. Heymann, G. Meyer, and M. Shafto. Some formal aspects of human-
automation interaction. Technical Report NASA/TM-2000-209600, NASA Ames Re-
search Center, Moffett Field, CA, 2000.

[4] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory

of NP-Completeness. W. H. Freeman and Company, 1979.

22



[5] A. Haji-Valizadeh and K. A. Loparo. Minimizing the cardinality of an event set for super-
visors of discrete-event dynamical systems. IEEE Transactions on Automatic Control,
41(11):1579–1593, 1996.

[6] S. Jiang, Z. Huang, V. Chandra, and R. Kumar. A polynomial algorithm for testing
diagnosability of discrete event systems. IEEE Transactions on Automatic Control,
pages 1318–1321, August 2001.

[7] S. Jiang, R. Kumar, and H. E. Garcia. Diagnosis of repeated failures in discrete event
systems. IEEE Transactions on Automatic Control, July 2001. Submitted.

[8] R. Kumar and V. K. Garg. Modeling and Control of Logical Discrete Event Systems.
Kluwer Academic Publishers, Boston, MA, 1995.

[9] F. Lin and W. M. Wonham. Decentralized supervisory control of discrete event systems.
Information Sciences, 44:199–224, 1988.

[10] F. Lin and W. M. Wonham. On observability of discrete-event systems. Information

Sciences, 44(3):173–198, 1988.

[11] C. M. Ozveren and A. S. Willsky. Observability of discrete event dynamical systems.
IEEE Transactions on Automatic Control, 35(7):797–806, 1990.

[12] C. M. Ozveren and A. S. Willsky. Invertibility of discrete-event dynamical systems.
Mathematics of Control, Signals and Systems, 5:365–390, 1992.

[13] P. J. Ramadge and W. M. Wonham. Supervisory control of a class of discrete event
processes. SIAM Journal of Control and Optimization, 25(1):206–230, 1987.

[14] K. Rudie and J. C. Willems. The computational complexity of decentralized discrete-
event control problems. IEEE Transactions on Automatic Control, 40(7):1313–1319,
July 1995.

[15] K. Rudie and W. M. Wonham. Think globally, act locally: decentralized supervisory
control. IEEE Transactions on Automatic Control, 37(11):1692–1708, November 1992.

[16] M. Sampath, R. Sengupta, S. Lafortune, K. Sinaamohideen, and D. Teneketzis. Diagons-
ability of discrete event systems. IEEE Transactions on Automatic Control, 40(9):1555–
1575, September 1995.

[17] J. N. Tsitsiklis. On the control of discrete event dynamical systems. Mathematics of

Control Signals and Systems, 2(2):95–107, 1989.

[18] K. C. Wong. On the complexity of projections of discrete-event systems. In IEE Work-

shop on Discrete Event Systems, pages 201–208, August 1998.

[19] K. C. Wong and W. M. Wonham. Hierarchical control of discrete event systems. Discrete

Event Dynamical Systems: Theory and Applications, 6:241–273, 1996.

23



[20] K. C. Wong and W. M. Wonham. On the computation of observers in discrete-event sys-
tems. In 2000 Conference on Information Sciences and Systems, Princeton University,
March 2000.

[21] T. Yoo and S. Lafortune. A generalized framework for decentralized supervisory control
of discrete event systems. In Proceedings of 2000 International Workshop on Discrete

Event Systems, Ghent, Belgium, 2000.

[22] T. Yoo and S. Lafortune. On the computational complexity of some problems arising
in partially-observed discrete-event systems. In Proceedings of 2001 American Control

Conference, Arlington, VA, 2001.

24


