EE324: Signals and Systems II
http://www.ece.iastate.edu/~rkumar/EE324

<table>
<thead>
<tr>
<th>Name</th>
<th>Course-Instructor</th>
<th>Lab-Instructor</th>
<th>Course-TA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name: Ratnesh Kumar</td>
<td>See Class Web</td>
<td>See Class Web</td>
<td></td>
</tr>
<tr>
<td>Email: rkumar</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Office Hr:</td>
<td>See Class Web</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Texts:

2. (Reference:) *Structure and Interpretation of Signals & Systems*, by E. Lee and P. Varaiya, Addison-Wesley, 2002
4. Other Web Resources:
 - Mathworks (MATLAB): http://www.mathworks.com
 - Berkeley Course Webpage: http://ptolemy.eecs.berkeley.edu/eecs20/index.html
 - Johns Hopkins Demo Webpage: http://www.jhu.edu/~signals

Course Content:

1. Laplace Transform (Chapter 6)
2. Z-Transform (Chapter 7)
3. Application to Filters/Equalizers (Chapter 8)
4. Application to Linear Feedback Systems (Chapter 9)

Grading Scheme:

- There will be two in class midterm exams; in roughly the 6th and 11th week, respectively. There will be one final exam (in 16th week) that will be comprehensive.
- Home works (which will include matlab exercises) will be assigned on a weekly basis. Those will be due a week later.
- There will be a certain number of quizzes given in the class.
- The course involves weekly labs. Prelab reports are due the day of the lab, and lab-reports are due the day of the next lab.
- Make-up or late submission will be allowed only with a prior arrangement with the instructor, or for emergency (eg, medical); adequate documentation should be provided for the same.
- TA will supervise labs and do teh garding, so please contact your TA for questions regarding your grading first.
- The overall distribution of grades is obtained as:

 | Homeworks: | 15% |
 | Quizzes: | 15% |
 | Labs: | 15% |
 | Midterms: | 30% |
 | Final Exam:| 25% |
 | Total: | 100%|

- Final letter grade will be assigned based on class score distribution with average being the cutoff for B− or better, and ≤ 45 is automatic F.
Learning Objectives:

- Learn Laplace transform (also, referred here as s-transform) as a generalization of Fourier Transform to decompose signals as exponentially decaying/growing sinusoids with fixed decay/growth rate, and understand the Region of Convergence (RoC) consisting of decay/growth rates required to be able to succeed in obtaining the decomposition.
- Learn s-transform for common signals (impulse, step, polynomial, exponential, sinusoids) and Laplace Transform properties (linearity, shift, modulation, scaling, convolution, differentiation, integration, t-multiplication, initial/final values)
- Learn how to compute inverse s-transform and the role of partial fractions, RoC, and causality/stability properties in performing inverses properties of the Fourier series and Fourier transform.
- Learn how to use s-transform to solve differential equations with initial conditions, and also initial analyze circuits, to obtain forced versus natural responses.
- Learn the notions of impulse response versus transfer function, stability, causality, inverse systems and minimum-phase systems.
- Learn the above five items for z-transform, by first learning that z-transform is essentially Laplace transform for sampled continuous-time signals to obtain discrete-time signals, and generalizes Discrete-time Fourier transform;
- Learn RoC (values of z for which z-transform based signal decomposition is possible); common z-transform pairs and z-transform properties (linearity, shift, inversion, modulation, linear-multiplication, etc.)
- Learn how to invert z-transform to obtain time-domain signal using partial fractions, and applying RoC or stability/causality requirements
- Learn how to use z-transform to solve difference equations with initial conditions
- Learn impulse response versus transfer function, stability, causality, inverse system, minimum-phase system.
- Learn how to approximate continuous-time models as discrete-time models using trapezoidal approximation (also referred as bilinear-mapping)
- Learn application of s-transform and z-transform in designing filters: analog filters by going frequency response to stable and causal transfer function
- Learn how to design FIR filter by computing impulse response for given frequency response, and introducing delay as well as windowing to truncate the impulse response
- Learn how to design IIR filter by first designing an analog filter, and next applying the bilinear-mapping to move to discrete-time domain, but first applying "pre-warping" to nullify the effect of "warping" introduced by bilinear-mapping.
- Learn how to apply transform function for design of feedback systems, by first learning the need for feedback in tracking reference signals under uncertainty
- Learn how to compute closed-loop transfer function from open-loop transfer function;
- Learn the effect of sensor noise and actuator disturbance on closed-loop behavior
- Learn how to analyze stability of closed-loop transfer function using Routh-Hurwitz, root-locus, Bode and Nyquist plots
- Learn output feedback design using root-locus, and determine stability margins (gain and phase margins) from Bode as well as Nyquist plots