SE 329 – Software Project Management

Time and Cost Planning – Part 3

Lotfi ben Othmane

Recall - Questions

 How much does it cost to develop the system?

 How long does it take to develop the system? Project goal: The goal of the project is to develop a low-cost fleet monitoring system. It includes a device installed in a bus collects data from their in-vehicle networks and sends them to a remote server along with the locations.

Deliverables

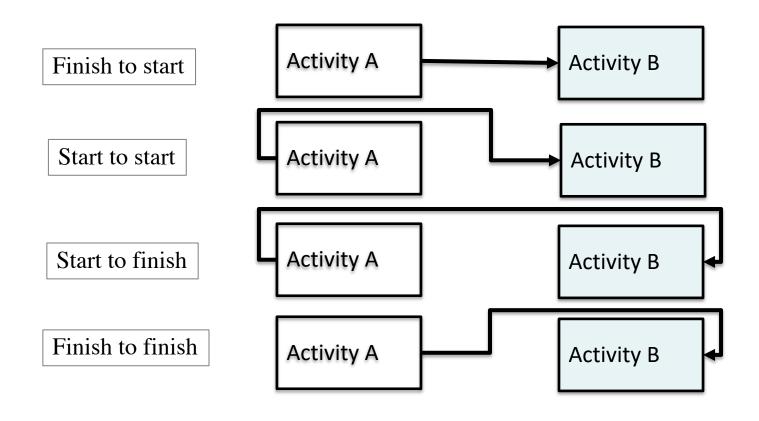
- 1. Data collection component: A device that collects data from the car and sends it to a remote server along with the location of the vehicle
- Data visualization: A web application that visualizes the position of each vehicles along with information collected from its network
- 3. Data analysis: A web application to run ad-hoc statistics using the data

Activities Sequencing

- We get the tasks using WBS
- We get the activity estimates

=> How long does the project take?

	Activity	Duration
1.0	Acquire hardware	5
2.0	Setup the development environment	3
3.0	Setup the libraries on the Ardino	4
4.0	Prepare the server with required libraries	1
5.0	Develop the acquisition component	
5.1	Send a request to the CAN and get the response	10
5.2	Format the response and send it to the server	2
6.0	Develop the server application	
6.1	Receive CAN data	5
6.2	Store data in database	2
7.0	Test the solution	10


Lecture Plan

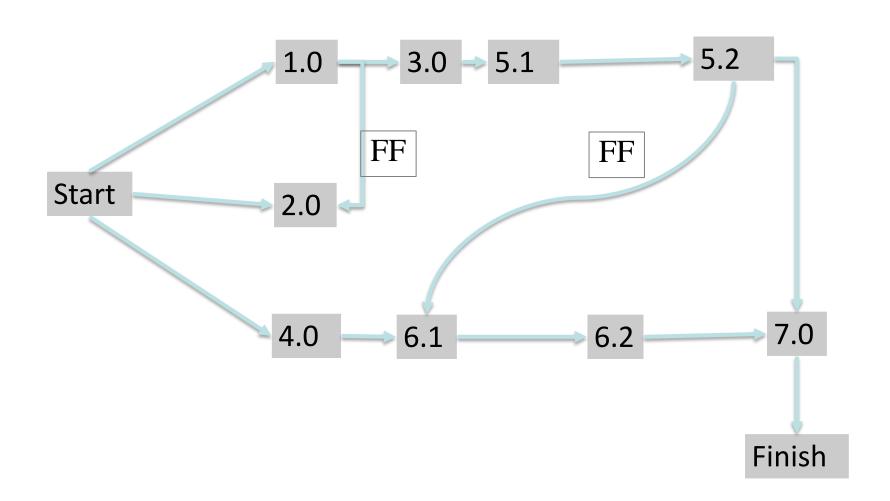
- 1. Identify project activities
- 2. Estimate activity resources
- 3. Sequence activities
- 4. Estimate project cost

Activity-Dependency Types

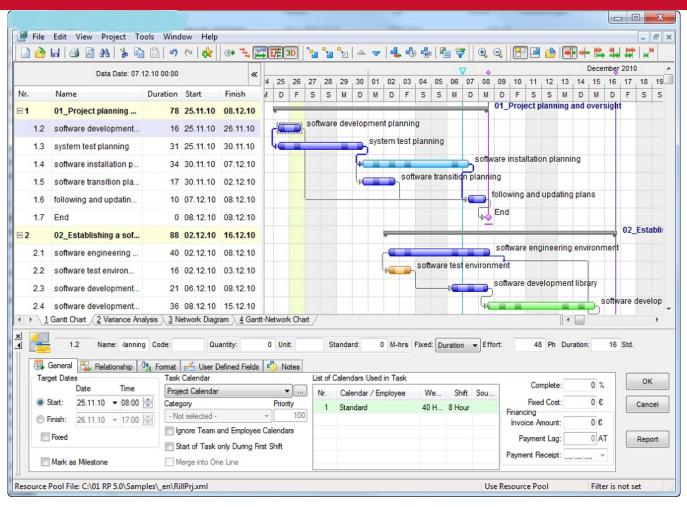
- Mandatory dependencies inherent, contractual, or legally required
 - E.g., develop before you test
- Discretionary dependencies preferred dependency based on e.g., based practices or logic.
- External dependencies -- relationships between the project activities and non-project activities
 - E.g., delivery of equipment
- Internal dependencies precedence relationship in the project – they are under team control

Dependency-Precedence Types

Example - Dependency


	Activity	Predecessors	Duration
1.0	Acquire hardware		5
2.0	Setup the development environment		3
3.0	Setup the libraries on the Ardino		4
4.0	Prepare the server with required libraries		1
5.0	Develop the acquisition component		
5.1	Send a request to the CAN and get the response		10
5.2	Format the response and send it to the server		2
6.0	Develop the server application		
6.1	Receive CAN data		5
6.2	Store data in database		2
7.0	Test the solution		10

Time for Project Completion


How long does the project take?

	Activity	Predecessors	Duration
1.0	Acquire hardware		5
2.0	Setup the development environment	1.0 FF	3
3.0	Setup the libraries on the Ardino	1.0	4
4.0	Prepare the server with required libraries		1
5.0	Develop the acquisition component	3.0	
5.1	Send a request to the CAN and get the response	3.0	10
5.2	Format the response and send it to the server	5.1	2
6.0	Develop the server application	4.0	
6.1	Receive CAN data	4.0 - 5.2 FF	5
6.2	Store data in database	6.1	2
7.0	Test the solution	5.2,6.2	10

Project Schedule Network Diagram

Project Schedule Network Diagram

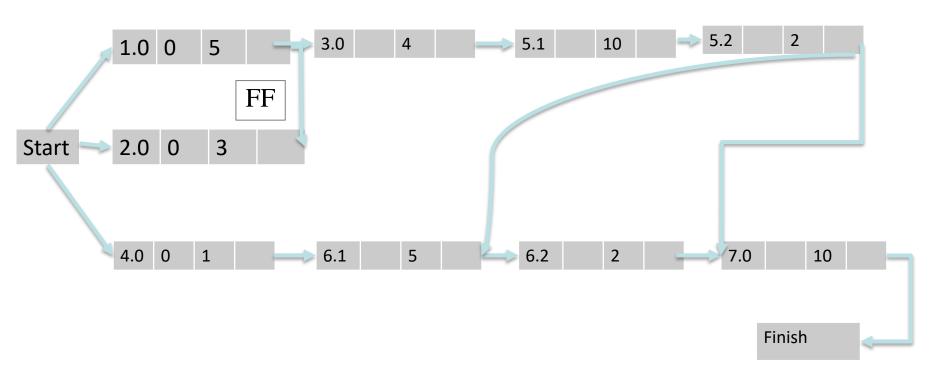
(image copied from Internet)

Critical Path Method

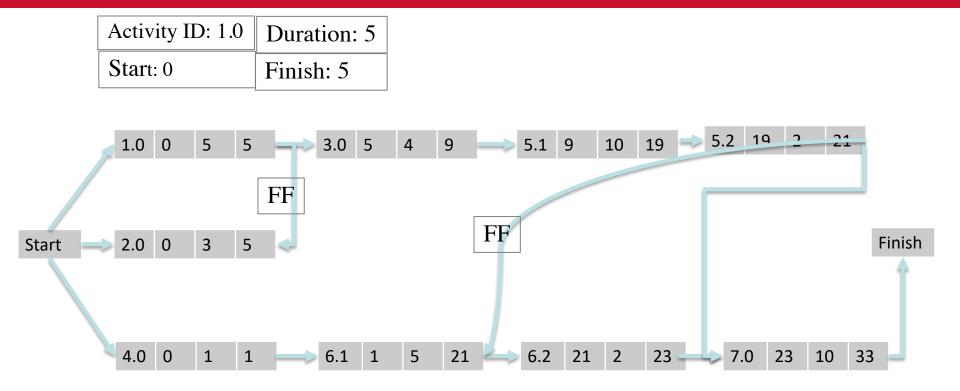
- The critical path is the sequence of activities that compose the longest path for a project to complete.
- Determines the shortest possible project duration.

Identification of the Critical Path

- 1. Represent each task with a rectangle
- 2. Connect each task with immediate predecessors
- 3. For each task, mark the start time, duration, and finish time
- 4. Enumerate all the paths
- 5. Calculate the total time for each path
- 6. The critical path is the path with the maximum total time


Example – Critical Path

	Activity	Predecessors	Duration
1.0	Acquire hardware		5
2.0	Setup the development environment		3
3.0	Setup the libraries on the Ardino	1.0	4
4.0	Prepare the server with required libraries		1
5.0	Develop the acquisition component	3.0	
5.1	Send a request to the CAN and get the response	3.0	10
5.2	Format the response and send it to the server	5.1	2
6.0	Develop the server application	4.0	
6.1	Receive CAN data	4.0	5
6.2	Store data in database	6.1	2
7.0	Test the solution	5.2,6.2	10

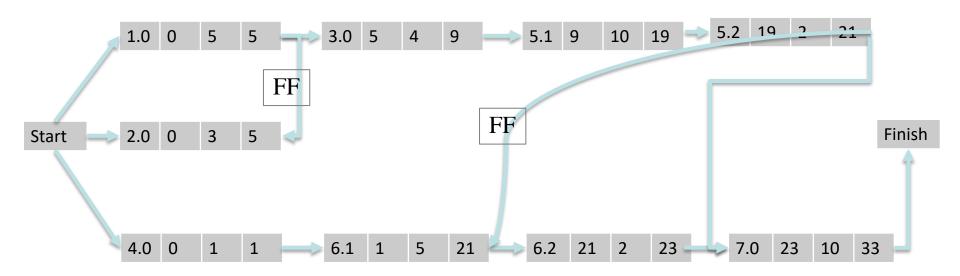

Example – Critical Path

What are the unique paths in the diagram?

What is the length of each of these paths?

Solution – Critical Path

Stack Time


- Slack time is the maximum time a task may be delayed beyond its early start without delaying the project completion
- Tasks that are in the critical path have no slack time.

Schedule Compression

- Schedule compression techniques shorten the schedule duration without affecting the scope.
- Crashing is a technique to shorten the schedule by adding resources
 - Approve overtime, add resources, pay for expediate delivery, etc.
- Fast tracking is a technique for preforming sequential activities in parallel

Example - Schedule Compression

Assume we want to reduce the project duration from 33 months to 27 months. What would you do?

Example - Schedule Compression

What would be the duration of the project if we start the testing when we start the development?

	Activity	Predecessors	Duration
1.0	Acquire hardware		5
2.0	Setup the development environment		3
3.0	Setup the libraries on the Ardino	1.0	4
4.0	Prepare the server with required libraries		1
5.0	Develop the acquisition component	3.0	
5.1	Send a request to the CAN and get the response	3.0	10
5.2	Format the response and send it to the server	5.1	2
6.0	Develop the server application	4.0	
6.1	Receive CAN data	4.0	5
6.2	Store data in database	6.1	2
7.0	Test the solution	5.2,6.2	10

Thank you