SE 329 – Software Project Management

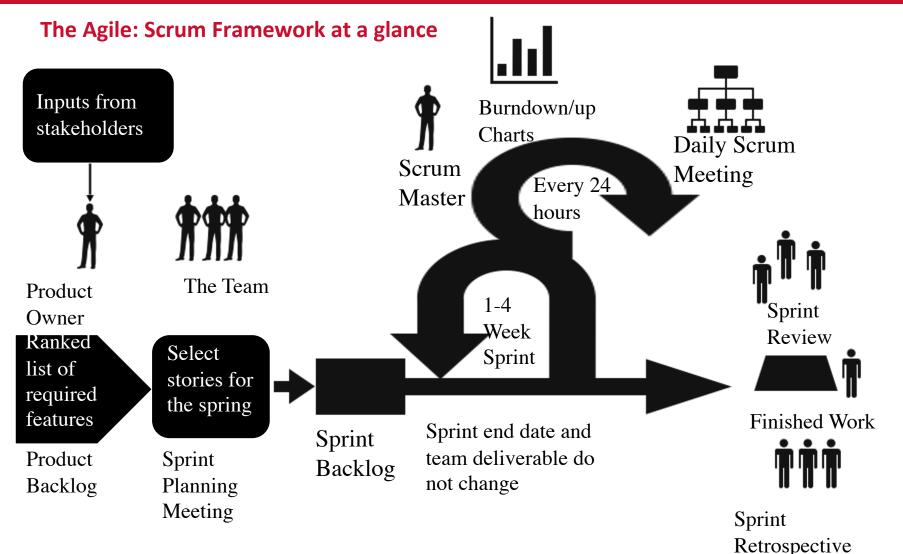
Time and Cost Planning

Lotfi ben Othmane

Recall - Questions

 How much does it cost to develop the system?

 How long does it take to develop the system? Project goal: The goal of the project is to develop a lowcost fleet monitoring system. It includes a device installed in a bus collects data from their in-vehicle networks and sends them to a remote server along with the the locations.


Deliverables

- 1. Data collection component: A device that collects data from the car and sends it to a remote server along with the location of the vehicle
- 2. Data visualization: A web application that visualizes the position of each vehicles along with information collected from its network
- 3. Data analysis: A web application to run ad-hoc statistics using the data

Lecture Plan

- 1. Identify project activities
- 2. Estimate activity resources
- 3. Sequence activities
- 4. Estimate project cost

Estimating Project Duration vs Development Process

What is Activity Estimate?

- Activity estimate is an <u>approximation</u> of the type and quantity of material and human resources required to perform an activity.
- Estimates <u>quantify</u> the cost required to complete a given work
- The accuracy of estimates depends on the level of details of the description of the work to be done.
- Classes of estimate
 - High level low accuracy
 - Low-level -- high accuracy

Uses of Activity Estimates

- It includes
 - Evaluate the viability of a project
 - Provide details for scheduling
 - Provide a basis for bidding
 - •

Techniques for Estimating Activity Duration

The common ones are:

- 1. Experts judgement
- 2. Analogous estimating
- 3. Parametric estimating
- 4. Three point estimating
- 5. Group decision-making estimating

Analogous estimating

- We have previous experience with similar projects
- The new estimate needs to consider the context of the new project such as complexity and size.

Parametric estimating

- Parametric estimating uses an <u>relationships</u> between project parameters as identified from historical data.
- Example of parameters
 - Language
 - Frameworks
 - Experience of developers

Parametric estimating

Case of fixing security bugs: See Table in Appendix A

https://link.springer.com/chapter/10.1007/978-3-319-23318-5_6

Three-points Estimation

- Consider estimation uncertainty
- Provided (Three estimates)
 - "o" Optimistic
 - "p" Pessimistic
 - "m" Most Likely
- Derived
 - "e" Expected Value (time) for each activity
 - "σ" Standard Deviation for the project
 - The expected variability
 - ("σ²" –we'll work with variance, so we can task variances)

Three-points Estimation

Expected (e)

$$= (o + 4m + p)/6$$

Activity	ο	m	р	е	variance						
Α	1	2	3	2							
В	2	3	4								
С		$e_A = (1 + (4)^*2 + 3)/6$									
D		e _A = 2									
Е	1	4	7								
F	1	2	9								
G	3	4	11								
Н	1	2	3								

Three-points Estimation

Compute the variance of estimates

Activity	0	m	р	е	$\sigma_p^2 = 3.7$
Α	1	2	3	2	0.11
В	2	3	4	3	0.11
с	1	2	3	2	0.11
D	2	4	6	4	0.44
E	1	4	7	4	1.00
F	1	2	9	3	1.78
G	3	4	11	5	1.78
н	1	2	3	2	0.11

Techniques for Estimating Activity Duration

- 1. Experts judgement
- 2. Analogous estimating
- 3. Parametric estimating
- 4. Three-points Estimation
- 5. Group decision-making estimating

Group Estimation– Poker Game

Discussion – Estimation Using the Poker Game

	Activity	Duration
1.0	Acquire hardware	
2.0	Setup the development environment	
3.0	Setup the libraries on the Ardino	
4.0	Prepare the server with required libraries	
5.0	Develop the acquisition component	
5.1	Send a request to the CAN and get the response	
5.2	Format the response and send it to the server	
6.0	Develop the server application	
6.1	Receive CAN data	
6.2	Store data in database	
7.0	Test the solution	

https://github.com/lbenothmane/FleetManagement

Divergence of Estimation

Why do the estimates diverge?

- Visualizes the durations of the tasks and assignments
- Easy to understand
- Does not support explicitly the dependencies between tasks

	Owner	Week										
Activity		1	2	3	4	5	6	7	8	9	10	11
Build Phase												
Order Parts and Materials	Karen	<		>								
Machine Frame Parts	Matt						\leftrightarrow					
Weld Frame Parts	Matt							\leftrightarrow				
Build Frame Structure Prototype	Matt							\leftrightarrow				
Build Frame Structure	Matt								\rightarrow			
Assemble Foam	Karen								\leftrightarrow			
Change Dampers on VIS	Rob							\leftrightarrow				
Set-Up Arduino and Accelerometers	Rob					\leftrightarrow						
Test Phase											<u> </u>	
Create Final Test Plan	Karen			-								<u> </u>
Vibration Testing	Rob							\leftrightarrow				<u> </u>
Impact Testing	Matt / Karen			_			-		4		<u> </u>	
Interface Testing	Matt							\leftrightarrow	<u> </u>			
Total System Specs Testing	Matt							24	\Leftrightarrow			
											_	
Presentation												
Technical Paper Draft	All							<	>			
Technical Paper Final	All									\Leftrightarrow		
MSD Poster	Karen									\leftrightarrow	<u> </u>	
Presentation for Imagine RIT	Karen									\leftrightarrow		
Final Project Review	Karen											
EDGE Website	Karen	< 								\rightarrow	1	
Miscellaneous												
Create Meeting Schedule		4										
Regular Updates with Guide		< - 1		_			_		_			

Contingency Reserve - Buffers

- Buffers are used to account for uncertainty
- The buffer is adjusted as the project progresses and detailed information are available

Thank you