
Deadly Sins

Lotfi ben Othmane



Course Outcomes

1. Understand project management processes
2. Develop project schedule
3. Identify risk and possible solutions
4. Manage human resources
5. Understand how to manage quality in software 

projects 
6. Plan for communication
7. Control project progress
8. Understand intellectual property

2



The “deadly sins” are mistakes 
that most often doom a project

What is “deadly sins”?

See 
Chapter 1

3



Inspiration vs. Perspiration

• In 2 words: Why a project can fail although the idea 
is excellent?

4



Inspiration - A product of creative thinking and work

Perspiration - Work that benefits from insight and 
cleverness but is about not screwing things up 

- “Dotting the i’s and crossing the t’s.”

Inspiration vs. Perspiration

5



Inspiration vs. Perspiration

6



Inspiration vs. Perspiration

“Most product development failures are of good 
product concepts that fail during the process of turning 
the concepts into a product” 

Cohen 2015

• Most products fail
• Not because the idea is bad
• But the execution is wrong

7



DS 1: Putting off “serious” testing

• What is the impact of delaying integration tests? 
(We assume that unit tests are done well)

1. No problem since the architecture is validated
2. The software components may fail to work
3. Some quality requirements cannot be satisfied
4. Customers are not satisfied

8



• Delaying testing delays discovering what you don’t 
know
o What if the specification from the client are 

wrong?
o What if the architecture assumptions turn out to 

be not valid

• Solution: Demo prototypes to the client
o Identify new “unknowns” and repeat

DS 1: Putting off “serious” testing

9



DS 1: Putting off “serious” testing

10



• Product development is largely an exercise in 
uncovering surprises as soon as possible.

• Surprises get more expensive to fix if discovered 
later.
• Happy surprises are rare
• Real world surprises lead to changes (and cost)

DS 1: Putting off “serious” testing

11



• Several products are often developed with 
assumptions about the client needs
• E.g., Digg.com of Xerox 

• Products are tested in the market place

DS 2: Assuming what the client wants

12

• USA has ~330 
million people 

• 3.1 million 
software 
engineers



DS 2: Assuming what the client wants

Why did Steve jobs or 
Henry ford succeed if this 
is a sin?

13

A lot of times, people 
don’t know what they 
want until you show it to 
them.



DS 3: Assuming that the users know what
they want in a product

How to ensure that the users know what they want?
1. Sign a contract
2. See similar products
3. See project demos
4. I have a better idea

14



DS 3: Assuming that the users know what
they want in a product

• “If you ask customers what they want, you’ll get an 
answer. That answer might be right, or it might be 
wrong, and you’d better find that out.” 

• Client imagine their future needs – which is uncertain

15



DS 4: Lack of comprehensive requirements

Without requirements there can not be a common vision

Using the requirements 
below, which computer 
should be build?

1. Runs my programs
2. Has a CPU/memory
3. Can connect to the network

16

Tech.co

The Guardian.com

1

2



DS 4: Lack of comprehensive requirements

• Capture all important “things” to client
• Compare to what’s practical
• Negotiate and inform as needed

• Avoid vague requirements like
• “attractive” and “world class”
They are interpreted differently by different people

17



Why do we plan then?

DS 5: Lack of a good project plan

18

Project plans will be wrong, quickly



• Engineers “dislike” them

• Their point is to 
• Create tasks list
• Estimate resources
• Understand dependencies
• Argue for additional staff
• Identify as many of the unknowns as possible

• Update with progress

DS 5: Lack of a good project plan

19



• We need to ensure that each task will be done when 
the start date comes

• Every task needs a champion
• Not necessarily the implementer
• Someone to stay on top of the progress & 

challenges
• Monitor prerequisites and inform dependents

DS 6: Not assigning responsibilities

20



• Selling some of the products may require certification
• Federal Communication Commission (FCC)
• Payment Card Industry Data Security Standard 
• Export regulation – e.g., security
• Domain-based standards: ISO 26262 for automotive

• Find an experienced expert to coordinate the compliance

• Case of Vehicle status and compliance with MISRA

DS 7: Not addressing regulations

21



DS 8: Sin of new-feature-itis

22



DS 8: Sin of new-feature-itis

What is the direct impact of adding new features later 
in the development?

1. impact the project plan
2. break existing features
3. improve customer satisfaction
4. require changes to the architecture
5. increase test effort 

23



• Late features impact the time and budget estimation, risk 
identification, etc.

• Product - correctness is more important than new features

DS 8: Sin of new-feature-itis

24



-1

0

1

2

3

4

0 2 4 6 8 10 12

Value of the software

DS 9: Not knowing when to quit polishing
• The more we test and improve a software the 

better it becomes.
• After some point: ship the product and “patch it 

later” 

25

Good enough to shipMight embarrass us



DS 9: Not knowing when to quit polishing

• What are the impacts of delaying quitting 
polishing?
1. Customers are deprived from the benefits of 

the software
2. Competitors may get early “technology” 

adaptors
3. Delivering software with no bugs
4. Gain in the budget

26



• Recall: Project plans will be wrong, quickly

è Mitigation: padding with 25%-30% ----- 100%-
200%

Did you plan 100% extra “for I do not know ”? 

è Plan for what can go wrong to justify the 
extra.

DS 10: Not planning to fail

27



DS 11: Developing technology instead of 
products

• The goal of each company is to develop product for their 
customers

• You will need to develop technologies for your own use

è Your own customers will not pay you for that

• Take the case of Microsoft and Apple
o Windows is based on QDOS
o MacOS and iOS are based on FreeBSD

28



• Golden Rule of Product Development: 
“Product development is largely an exercise in uncovering 
surprises as soon as possible.”

1. Putting off “serious” testing Vice of laziness
2. Assuming what the client wants Vice of assumption
3. Assuming the client knows what they need Vice of assumption
4. Lack of requirements Vice of fuzziness
5. Lack of a good project plan Vice of fuzziness
6. Not assigning responsibility Vice of fuzziness
7. Not addressing regulations Vice of cluelessness
8. The Sin of New-Feature-It is Vice of perfectionism
9. Not knowing when to quit polishing Vice of perfectionism
10. Not planning to fail Vice of hubris
11. Developing tech instead of products Vice of ego

“Deadly Sins” Summary

29


