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FIGURE 5.1. A simple linear classifier having d input units, each corresponding to the
values of the components of an input vector. Each input feature value xi is multiplied
by its corresponding weight wi; the effective input at the output unit is the sum all these
products,

∑
wixi. We show in each unit its effective input-output function. Thus each of

the d input units is linear, emitting exactly the value of its corresponding feature value.
The single bias unit unit always emits the constant value 1.0. The single output unit
emits a +1 if wtx + w0 > 0 or a −1 otherwise. From: Richard O. Duda, Peter E. Hart,
and David G. Stork, Pattern Classification. Copyright c© 2001 by John Wiley & Sons,
Inc.
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FIGURE 5.2. The linear decision boundary H, where g(x) = wtx+w0 = 0, separates the
feature space into two half-spaces R1 (where g(x) > 0) and R2 (where g(x) < 0). From:
Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright
c© 2001 by John Wiley & Sons, Inc.
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FIGURE 5.3. Linear decision boundaries for a four-class problem. The top figure shows
ωi/not ωi dichotomies while the bottom figure shows ωi/ωj dichotomies and the corre-
sponding decision boundaries Hij. The pink regions have ambiguous category assign-
ments. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification.
Copyright c© 2001 by John Wiley & Sons, Inc.
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lem and a five-class problem. From: Richard O. Duda, Peter E. Hart, and David G. Stork,
Pattern Classification. Copyright c© 2001 by John Wiley & Sons, Inc.
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one-dimensional x-space. From: Richard O. Duda, Peter E. Hart, and David G. Stork,
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FIGURE 5.6. The two-dimensional input space x is mapped through a polynomial func-
tion f to y. Here the mapping is y1 = x1, y2 = x2 and y3 ∝ x1x2. A linear discriminant
in this transformed space is a hyperplane, which cuts the surface. Points to the positive
side of the hyperplane Ĥ correspond to category ω1, and those beneath it correspond to
category ω2. Here, in terms of the x space, R1 is a not simply connected. From: Richard
O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright c© 2001
by John Wiley & Sons, Inc.
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FIGURE 5.7. A three-dimensional augmented feature space y and augmented weight
vector a (at the origin). The set of points for which aty = 0 is a plane (or more generally,
a hyperplane) perpendicular to a and passing through the origin of y-space, as indicated
by the red disk. Such a plane need not pass through the origin of the two-dimensional
feature space of the problem, as illustrated by the dashed decision boundary shown at
the top of the box. Thus there exists an augmented weight vector a that will lead to any
straight decision line in x-space. From: Richard O. Duda, Peter E. Hart, and David G.
Stork, Pattern Classification. Copyright c© 2001 by John Wiley & Sons, Inc.
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FIGURE 5.8. Four training samples (black for ω1, red for ω2) and the solution region in
feature space. The figure on the left shows the raw data; the solution vectors leads to a
plane that separates the patterns from the two categories. In the figure on the right, the
red points have been “normalized”—that is, changed in sign. Now the solution vector
leads to a plane that places all “normalized” points on the same side. From: Richard O.
Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright c© 2001 by
John Wiley & Sons, Inc.



solution
region

y1

y2

y3

a1

a2

solution
region

a2

a1

y1

y2

y3

b/||y
2 ||

b/||y 1
||

b/
||y

3
||

}

}

}
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no margin (b = 0) equivalent to a case such as shown at the left in Fig. 5.8. At the right
is the case b > 0, shrinking the solution region by margins b/‖yi‖. From: Richard O.
Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright c© 2001 by
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FIGURE 5.10. The sequence of weight vectors given by a simple gradient descent
method (red) and by Newton’s (second order) algorithm (black). Newton’s method typi-
cally leads to greater improvement per step, even when using optimal learning rates for
both methods. However the added computational burden of inverting the Hessian ma-
trix used in Newton’s method is not always justified, and simple gradient descent may
suffice. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification.
Copyright c© 2001 by John Wiley & Sons, Inc.
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FIGURE 5.11. Four learning criteria as a function of weights in a linear classifier. At the
upper left is the total number of patterns misclassified, which is piecewise constant and
hence unacceptable for gradient descent procedures. At the upper right is the Perceptron
criterion (Eq. 16), which is piecewise linear and acceptable for gradient descent. The
lower left is squared error (Eq. 32), which has nice analytic properties and is useful
even when the patterns are not linearly separable. The lower right is the square error
with margin (Eq. 33). A designer may adjust the margin b in order to force the solution
vector to lie toward the middle of the b = 0 solution region in hopes of improving
generalization of the resulting classifier. From: Richard O. Duda, Peter E. Hart, and
David G. Stork, Pattern Classification. Copyright c© 2001 by John Wiley & Sons, Inc.
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FIGURE 5.12. The Perceptron criterion, Jp(a), is plotted as a function of the weights a1

and a2 for a three-pattern problem. The weight vector begins at 0, and the algorithm
sequentially adds to it vectors equal to the “normalized” misclassified patterns them-
selves. In the example shown, this sequence is y2, y3, y1, y3, at which time the vector
lies in the solution region and iteration terminates. Note that the second update (by y3)
takes the candidate vector farther from the solution region than after the first update
(cf. Theorem 5.1). From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern
Classification. Copyright c© 2001 by John Wiley & Sons, Inc.
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FIGURE 5.13. Samples from two categories, ω1 (black) and ω2 (red) are shown in aug-
mented feature space, along with an augmented weight vector a. At each step in a
fixed-increment rule, one of the misclassified patterns, yk , is shown by the large dot.
A correction �a (proportional to the pattern vector yk ) is added to the weight vector—
toward an ω1 point or away from an ω2 point. This changes the decision boundary from
the dashed position (from the previous update) to the solid position. The sequence of
resulting a vectors is shown, where later values are shown darker. In this example, by
step 9 a solution vector has been found and the categories are successfully separated
by the decision boundary shown. From: Richard O. Duda, Peter E. Hart, and David G.
Stork, Pattern Classification. Copyright c© 2001 by John Wiley & Sons, Inc.
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FIGURE 5.14. In each step of a basic relaxation algorithm, the weight vector is moved
a proportion η of the way toward the hyperplane defined by atyk = b. From: Richard O.
Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright c© 2001 by
John Wiley & Sons, Inc.
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FIGURE 5.15. At the left, underrelaxation (η < 1) leads to needlessly slow descent,
or even failure to converge. Overrelaxation (1 < η < 2, shown at the right) describes
overshooting; nevertheless, convergence will ultimately be achieved. From: Richard O.
Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright c© 2001 by
John Wiley & Sons, Inc.
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FIGURE 5.16. The top figure shows two class-conditional densities, and the middle
figure the posteriors, assuming equal priors. Minimizing the MSE error also minimizes
the mean-squared-error between aty and the discriminant function g(x) (here a seventh-
order polynomial) measured over the data distribution, as shown at the bottom. Note
that the resulting g(x) best approximates g0(x) in the regions where the data points
lie. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification.
Copyright c© 2001 by John Wiley & Sons, Inc.
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FIGURE 5.17. The LMS algorithm need not converge to a separating hyperplane, even if
one exists. Because the LMS solution minimizes the sum of the squares of the distances
of the training points to the hyperplane, for this example the plane is rotated clockwise
compared to a separating hyperplane. From: Richard O. Duda, Peter E. Hart, and David
G. Stork, Pattern Classification. Copyright c© 2001 by John Wiley & Sons, Inc.
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FIGURE 5.18. Surfaces of constant z = �tu are shown in gray, while constraints of
the form Au� are shown in red. The simplex algorithm finds an extremum of z given
the constraints, that is, where the gray plane intersects the red at a single point. From:
Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright
c© 2001 by John Wiley & Sons, Inc.
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FIGURE 5.19. Training a support vector machine consists of finding the optimal hyper-
plane, that is, the one with the maximum distance from the nearest training patterns.
The support vectors are those (nearest) patterns, a distance b from the hyperplane. The
three support vectors are shown as solid dots. From: Richard O. Duda, Peter E. Hart,
and David G. Stork, Pattern Classification. Copyright c© 2001 by John Wiley & Sons,
Inc.


