

FIGURE 4.1. The relative probability an estimate given by Eq. 4 will yield a particular value for the probability density, here where the true probability was chosen to be 0.7. Each curve is labeled by the total number of patterns n sampled, and is scaled to give the same maximum (at the true probability). The form of each curve is binomial, as given by Eq. 2. For large n, such binomials peak strongly at the true probability. In the limit $n \rightarrow \infty$, the curve approaches a delta function, and we are guaranteed that our estimate will give the true probability. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright © 2001 by John Wiley \& Sons, Inc.

FIGURE 4.2. There are two leading methods for estimating the density at a point, here at the center of each square. The one shown in the top row is to start with a large volume centered on the test point and shrink it according to a function such as $V_{n}=1 / \sqrt{n}$. The other method, shown in the bottom row, is to decrease the volume in a data-dependent way, for instance letting the volume enclose some number $k_{n}=\sqrt{n}$ of sample points. The sequences in both cases represent random variables that generally converge and allow the true density at the test point to be calculated. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright © 2001 by John Wiley \& Sons, Inc.

FIGURE 4.3. Examples of two-dimensional circularly symmetric normal Parzen windows for three different values of h. Note that because the $\delta(\mathbf{x})$ are normalized, different vertical scales must be used to show their structure. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright © 2001 by John Wiley \& Sons, Inc.

FIGURE 4.4. Three Parzen-window density estimates based on the same set of five samples, using the window functions in Fig. 4.3. As before, the vertical axes have been scaled to show the structure of each distribution. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright © 2001 by John Wiley \& Sons, Inc.

FIGURE 4.5. Parzen-window estimates of a univariate normal density using different window widths and numbers of samples. The vertical axes have been scaled to best show the structure in each graph. Note particularly that the $n=\infty$ estimates are the same (and match the true density function), regardless of window width. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright © 2001 by John Wiley \& Sons, Inc.

FIGURE 4.6. Parzen-window estimates of a bivariate normal density using different window widths and numbers of samples. The vertical axes have been scaled to best show the structure in each graph. Note particularly that the $n=\infty$ estimates are the same (and match the true distribution), regardless of window width. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright © 2001 by John Wiley \& Sons, Inc.

FIGURE 4.7. Parzen-window estimates of a bimodal distribution using different window widths and numbers of samples. Note particularly that the $n=\infty$ estimates are the same (and match the true distribution), regardless of window width. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright © 2001 by John Wiley \& Sons, Inc.

FIGURE 4.8. The decision boundaries in a two-dimensional Parzen-window dichotomizer depend on the window width h. At the left a small h leads to boundaries that are more complicated than for large h on same data set, shown at the right. Apparently, for these data a small h would be appropriate for the upper region, while a large h would be appropriate for the lower region; no single window width is ideal overall. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright © 2001 by John Wiley \& Sons, Inc.

FIGURE 4.9. A probabilistic neural network (PNN) consists of d input units, n pattern units, and c category units. Each pattern unit forms the inner product of its weight vector and the normalized pattern vector \mathbf{x} to form $z=\mathbf{w}^{t} \mathbf{x}$, and then it emits $\exp \left[(z-1) / \sigma^{2}\right]$. Each category unit sums such contributions from the pattern unit connected to it. This ensures that the activity in each of the category units represents the Parzen-window density estimate using a circularly symmetric Gaussian window of covariance $\sigma^{2} \mathbf{I}$, where \mathbf{I} is the $d \times d$ identity matrix. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright © 2001 by John Wiley \& Sons, Inc.

FIGURE 4.10. Eight points in one dimension and the k-nearest-neighbor density estimates, for $k=3$ and 5 . Note especially that the discontinuities in the slopes in the estimates generally lie away from the positions of the prototype points. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright © 2001 by John Wiley \& Sons, Inc.

FIGURE 4.11. The k-nearest-neighbor estimate of a two-dimensional density for $k=5$. Notice how such a finite n estimate can be quite "jagged," and notice that discontinuities in the slopes generally occur along lines away from the positions of the points themselves. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright © 2001 by John Wiley \& Sons, Inc.

FIGURE 4.12. Several k-nearest-neighbor estimates of two unidimensional densities: a Gaussian and a bimodal distribution. Notice how the finite n estimates can be quite "spiky." From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright © 2001 by John Wiley \& Sons, Inc.

FIGURE 4.13. In two dimensions, the nearest-neighbor algorithm leads to a partitioning of the input space into Voronoi cells, each labeled by the category of the training point it contains. In three dimensions, the cells are three-dimensional, and the decision boundary resembles the surface of a crystal. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright © 2001 by John Wiley \& Sons, Inc.

FIGURE 4.14. Bounds on the nearest-neighbor error rate P in a c-category problem given infinite training data, where P^{*} is the Bayes error (Eq. 52). At low error rates, the nearest-neighbor error rate is bounded above by twice the Bayes rate. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright © 2001 by John Wiley \& Sons, Inc.

FIGURE 4.15. The k-nearest-neighbor query starts at the test point \mathbf{x} and grows a spherical region until it encloses k training samples, and it labels the test point by a majority vote of these samples. In this $k=5$ case, the test point \mathbf{x} would be labeled the category of the black points. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright © 2001 by John Wiley \& Sons, Inc.

FIGURE 4.16. The error rate for the k-nearest-neighbor rule for a two-category problem is bounded by $C_{k}\left(P^{*}\right)$ in Eq. 54. Each curve is labeled by k; when $k=\infty$, the estimated probabilities match the true probabilities and thus the error rate is equal to the Bayes rate, that is, $P=P^{*}$. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright © 2001 by John Wiley \& Sons, Inc.

FIGURE 4.17. A parallel nearest-neighbor circuit can perform search in constant-that is, $O(1)$-time. The d-dimensional test pattern \mathbf{x} is presented to each box, which calculates which side of a cell's face \mathbf{x} lies on. If it is on the "close" side of every face of a cell, it lies in the Voronoi cell of the stored pattern, and receives its label. In the case shown, each of the three AND gates corresponds to a single Voronoi cell. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright © 2001 by John Wiley \& Sons, Inc.

FIGURE 4.18. Scaling the coordinates of a feature space can change the distance relationships computed by the Euclidean metric. Here we see how such scaling can change the behavior of a nearest-neighbor classifer. Consider the test point \mathbf{x} and its nearest neighbor. In the original space (left), the black prototype is closest. In the figure at the right, the x_{1} axis has been rescaled by a factor $1 / 3$; now the nearest prototype is the red one. If there is a large disparity in the ranges of the full data in each dimension, a common procedure is to rescale all the data to equalize such ranges, and this is equivalent to changing the metric in the original space. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright © 2001 by John Wiley \& Sons, Inc.

FIGURE 4.19. Each colored surface consists of points a distance 1.0 from the origin, measured using different values for k in the Minkowski metric (k is printed in red). Thus the white surfaces correspond to the L_{1} norm (Manhattan distance), the light gray sphere corresponds to the L_{2} norm (Euclidean distance), the dark gray ones correspond to the L_{4} norm, and the pink box corresponds to the L_{∞} norm. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright © 2001 by John Wiley \& Sons, Inc.

FIGURE 4.20. The uncritical use of Euclidean metric cannot address the problem of translation invariance. Pattern \mathbf{x}^{\prime} represents a handwritten 5 , and $\mathbf{x}^{\prime}(s=3)$ represents the same shape but shifted three pixels to the right. The Euclidean distance $D\left(\mathbf{x}^{\prime}, \mathbf{x}^{\prime}(s=3)\right)$ is much larger than $D\left(\mathbf{x}^{\prime}, \mathbf{x}_{8}\right)$, where \mathbf{x}_{8} represents the handwritten 8 . Nearest-neighbor classification based on the Euclidean distance in this way leads to very large errors. Instead, we seek a distance measure that would be insensitive to such translations, or indeed other known invariances, such as scale or rotation. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright © 2001 by John Wiley \& Sons, Inc.

FIGURE 4.21. The pixel image of the handwritten 5 prototype at the lower left was subjected to two transformations, rotation, and line thinning, to obtain the tangent vectors $\mathbf{T V}_{1}$ and $\mathbf{T V}_{2}$; images corresponding to these tangent vectors are shown outside the axes. Each of the 16 images within the axes represents the prototype plus linear combination of the two tangent vectors with coefficients a_{1} and a_{2}. The small red number in each image is the Euclidean distance between the tangent approximation and the image generated by the unapproximated transformations. Of course, this Euclidean distance is 0 for the prototype and for the cases $a_{1}=1, a_{2}=0$ and $a_{1}=0, a_{2}=1$. (The patterns generated with $a_{1}+a_{2}>1$ have a gray background because of automatic grayscale conversion of images with negative pixel values.) From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright © 2001 by John Wiley \& Sons, Inc.

FIGURE 4.22. A stored prototype \mathbf{x}^{\prime}, if transformed by combinations of two basic transformations, would fall somewhere on a complicated curved surface in the full d dimensional space (gray). The tangent space at \mathbf{x}^{\prime} is an r-dimensional Euclidean space, spanned by the tangent vectors (here $\mathbf{T V}_{1}$ and $\mathbf{T V}_{2}$). The tangent distance $D_{\tan }\left(\mathbf{x}^{\prime}, \mathbf{x}\right)$ is the smallest Euclidean distance from \mathbf{x} to the tangent space of \mathbf{x}^{\prime}, shown in the solid red lines for two points, \mathbf{x}_{1} and \mathbf{x}_{2}. Thus although the Euclidean distance from \mathbf{x}^{\prime} to \mathbf{x}_{1} is less than that to \mathbf{x}_{2}, for the tangent distance the situation is reversed. The Euclidean distance from \mathbf{x}_{2} to the tangent space of \mathbf{x}^{\prime} is a quadratic function of the parameter vector \mathbf{a}, as shown by the pink paraboloid. Thus simple gradient descent methods can find the optimal vector a and hence the tangent distance $D_{\tan }\left(\mathbf{x}^{\prime}, \mathbf{x}_{2}\right)$. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright © 2001 by John Wiley \& Sons, Inc.

FIGURE 4.23. "Category membership" functions, derived from the designer's prior knowledge, together with a conjunction rule lead to discriminants. In this figure, x might represent an objectively measurable value such as the reflectivity of a fish's skin. The designer believes there are four relevant ranges, which might be called dark, medium-dark, medium-light, and light. The designer believes there are four relevant ranges or "categories" for the reflectivity feature, which might be called dark, medium-dark, mediumlight, and light. The categories for the feature, of course, are not the same as the true categories or classes for the patterns. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright © 2001 by John Wiley \& Sons, Inc.

FIGURE 4.24. "Category membership" functions and a conjunction rule based on the designer's prior knowledge lead to discriminant functions. Here x_{1} and x_{2} are objectively measurable feature values. The designer believes that a particular class can be described as the conjunction of two "category memberships," here shown bold. Here the conjunction rule of Eq. 61 is used to give the discriminant function. The resulting discriminant function for the final category is indicated by the grayscale in the middle: the greater the discriminant, the darker. The designer constructs discriminant functions for other categories in a similar way (possibly also using disjunctions or other logical relations). During classification, the maximum discriminant function is chosen. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright (C) 2001 by John Wiley \& Sons, Inc.

FIGURE 4.25. An RCE network is topologically equivalent to the PNN of Fig. 4.9. During training, normalized weights are adjusted to have the same values as the normalized pattern presented, just as in a PNN. In this way, distances can be calculated by an inner product. Pattern units in an RCE network also have a modifiable threshold corresponding to a "radius" λ. During training, each threshold is adjusted so that its radius is as large as possible without containing training patterns from a different category. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright (C) 2001 by John Wiley \& Sons, Inc.

FIGURE 4.26. During training of an RCE network, each pattern has a parameterequivalent to a radius in the d-dimensional space-that is adjusted to be as large as possible without enclosing any points from a different category (up to a maximum λ_{m}). As new patterns are presented, each such radius is decreased so that no sphere encloses a pattern of a different category. In this way, each sphere can enclose only patterns having the same category label. In this figure, the regions corresponding to one category are pink, and the other category are gray. Ambiguous regions (those enclosed by spheres of both categories) are shown in dark red. The number of points is shown in each component figure. The figure at the bottom shows the final decision regions, colored by category. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright © 2001 by John Wiley \& Sons, Inc.

