
1
k/n

0.5

1

relative
probability

0

100
5020

P = 0.7

FIGURE 4.1. The relative probability an estimate given by Eq. 4 will yield a particular
value for the probability density, here where the true probability was chosen to be 0.7.
Each curve is labeled by the total number of patterns n sampled, and is scaled to give
the same maximum (at the true probability). The form of each curve is binomial, as
given by Eq. 2. For large n, such binomials peak strongly at the true probability. In the
limit n → ∞, the curve approaches a delta function, and we are guaranteed that our
estimate will give the true probability. From: Richard O. Duda, Peter E. Hart, and David
G. Stork, Pattern Classification. Copyright c© 2001 by John Wiley & Sons, Inc.
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kn = √n

FIGURE 4.2. There are two leading methods for estimating the density at a point, here
at the center of each square. The one shown in the top row is to start with a large volume
centered on the test point and shrink it according to a function such as Vn = 1/

√
n. The

other method, shown in the bottom row, is to decrease the volume in a data-dependent
way, for instance letting the volume enclose some number kn = √

n of sample points.
The sequences in both cases represent random variables that generally converge and
allow the true density at the test point to be calculated. From: Richard O. Duda, Peter
E. Hart, and David G. Stork, Pattern Classification. Copyright c© 2001 by John Wiley &
Sons, Inc.
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FIGURE 4.3. Examples of two-dimensional circularly symmetric normal Parzen win-
dows for three different values of h. Note that because the δ(x) are normalized, different
vertical scales must be used to show their structure. From: Richard O. Duda, Peter E.
Hart, and David G. Stork, Pattern Classification. Copyright c© 2001 by John Wiley &
Sons, Inc.
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FIGURE 4.4. Three Parzen-window density estimates based on the same set of five samples, using the window
functions in Fig. 4.3. As before, the vertical axes have been scaled to show the structure of each distribution.
From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright c© 2001 by John
Wiley & Sons, Inc.
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FIGURE 4.5. Parzen-window estimates of a univariate normal density using different
window widths and numbers of samples. The vertical axes have been scaled to best
show the structure in each graph. Note particularly that the n = ∞ estimates are the
same (and match the true density function), regardless of window width. From: Richard
O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright c© 2001
by John Wiley & Sons, Inc.
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FIGURE 4.6. Parzen-window estimates of a bivariate normal density using different window widths and num-
bers of samples. The vertical axes have been scaled to best show the structure in each graph. Note particularly
that the n = ∞ estimates are the same (and match the true distribution), regardless of window width. From:
Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright c© 2001 by John Wiley
& Sons, Inc.
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FIGURE 4.7. Parzen-window estimates of a bimodal distribution using different window
widths and numbers of samples. Note particularly that the n = ∞ estimates are the same
(and match the true distribution), regardless of window width. From: Richard O. Duda,
Peter E. Hart, and David G. Stork, Pattern Classification. Copyright c© 2001 by John
Wiley & Sons, Inc.
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FIGURE 4.8. The decision boundaries in a two-dimensional Parzen-window di-
chotomizer depend on the window width h. At the left a small h leads to boundaries
that are more complicated than for large h on same data set, shown at the right. Appar-
ently, for these data a small h would be appropriate for the upper region, while a large
h would be appropriate for the lower region; no single window width is ideal over-
all. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification.
Copyright c© 2001 by John Wiley & Sons, Inc.
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FIGURE 4.9. A probabilistic neural network (PNN) consists of d input units, n pat-
tern units, and c category units. Each pattern unit forms the inner product of its
weight vector and the normalized pattern vector x to form z = wtx, and then it emits
exp[(z − 1)/σ 2]. Each category unit sums such contributions from the pattern unit con-
nected to it. This ensures that the activity in each of the category units represents the
Parzen-window density estimate using a circularly symmetric Gaussian window of co-
variance σ 2I, where I is the d ×d identity matrix. From: Richard O. Duda, Peter E. Hart,
and David G. Stork, Pattern Classification. Copyright c© 2001 by John Wiley & Sons,
Inc.
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FIGURE 4.10. Eight points in one dimension and the k-nearest-neighbor density esti-
mates, for k = 3 and 5. Note especially that the discontinuities in the slopes in the
estimates generally lie away from the positions of the prototype points. From: Richard
O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright c© 2001
by John Wiley & Sons, Inc.
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FIGURE 4.11. The k-nearest-neighbor estimate of a two-dimensional density for k = 5.
Notice how such a finite n estimate can be quite “jagged,” and notice that disconti-
nuities in the slopes generally occur along lines away from the positions of the points
themselves. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classifi-
cation. Copyright c© 2001 by John Wiley & Sons, Inc.



0 1 2 3 4

1

0 1 2 3 4

1

0 1 2 3 4

1

0 1 2 3 4

1

0 1 2 3 4

1

0 1 2 3 4

1

0 1 2 3 4

1

0 1 2 3 4

1

n=1

kn=1

n=16

kn=4

n=256

kn=16

n= ∞
kn= ∞

FIGURE 4.12. Several k-nearest-neighbor estimates of two unidimensional densities:
a Gaussian and a bimodal distribution. Notice how the finite n estimates can be quite
“spiky.” From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification.
Copyright c© 2001 by John Wiley & Sons, Inc.
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FIGURE 4.13. In two dimensions, the nearest-neighbor algorithm leads to a partition-
ing of the input space into Voronoi cells, each labeled by the category of the training
point it contains. In three dimensions, the cells are three-dimensional, and the decision
boundary resembles the surface of a crystal. From: Richard O. Duda, Peter E. Hart, and
David G. Stork, Pattern Classification. Copyright c© 2001 by John Wiley & Sons, Inc.
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FIGURE 4.14. Bounds on the nearest-neighbor error rate P in a c-category problem
given infinite training data, where P∗ is the Bayes error (Eq. 52). At low error rates, the
nearest-neighbor error rate is bounded above by twice the Bayes rate. From: Richard O.
Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright c© 2001 by
John Wiley & Sons, Inc.
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FIGURE 4.15. The k-nearest-neighbor query starts at the test point x and grows a spher-
ical region until it encloses k training samples, and it labels the test point by a majority
vote of these samples. In this k = 5 case, the test point x would be labeled the category
of the black points. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern
Classification. Copyright c© 2001 by John Wiley & Sons, Inc.
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FIGURE 4.16. The error rate for the k-nearest-neighbor rule for a two-category problem
is bounded by Ck(P∗) in Eq. 54. Each curve is labeled by k; when k = ∞, the estimated
probabilities match the true probabilities and thus the error rate is equal to the Bayes
rate, that is, P = P∗. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern
Classification. Copyright c© 2001 by John Wiley & Sons, Inc.
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FIGURE 4.17. A parallel nearest-neighbor circuit can perform search in constant—that
is, O(1)—time. The d-dimensional test pattern x is presented to each box, which cal-
culates which side of a cell’s face x lies on. If it is on the “close” side of every face of
a cell, it lies in the Voronoi cell of the stored pattern, and receives its label. In the case
shown, each of the three AND gates corresponds to a single Voronoi cell. From: Richard
O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright c© 2001
by John Wiley & Sons, Inc.
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FIGURE 4.18. Scaling the coordinates of a feature space can change the distance rela-
tionships computed by the Euclidean metric. Here we see how such scaling can change
the behavior of a nearest-neighbor classifer. Consider the test point x and its nearest
neighbor. In the original space (left), the black prototype is closest. In the figure at the
right, the x1 axis has been rescaled by a factor 1/3; now the nearest prototype is the red
one. If there is a large disparity in the ranges of the full data in each dimension, a com-
mon procedure is to rescale all the data to equalize such ranges, and this is equivalent
to changing the metric in the original space. From: Richard O. Duda, Peter E. Hart, and
David G. Stork, Pattern Classification. Copyright c© 2001 by John Wiley & Sons, Inc.



1

4
2

∞

0,0,0

1,0,0

0,1,0
1,1,1

FIGURE 4.19. Each colored surface consists of points a distance 1.0 from the origin,
measured using different values for k in the Minkowski metric (k is printed in red). Thus
the white surfaces correspond to the L1 norm (Manhattan distance), the light gray sphere
corresponds to the L2 norm (Euclidean distance), the dark gray ones correspond to the
L4 norm, and the pink box corresponds to the L∞ norm. From: Richard O. Duda, Peter
E. Hart, and David G. Stork, Pattern Classification. Copyright c© 2001 by John Wiley &
Sons, Inc.
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FIGURE 4.20. The uncritical use of Euclidean metric cannot address the problem of
translation invariance. Pattern x′ represents a handwritten 5, and x′(s = 3) represents the
same shape but shifted three pixels to the right. The Euclidean distance D(x′, x′(s = 3))

is much larger than D(x′, x8), where x8 represents the handwritten 8. Nearest-neighbor
classification based on the Euclidean distance in this way leads to very large errors.
Instead, we seek a distance measure that would be insensitive to such translations, or
indeed other known invariances, such as scale or rotation. From: Richard O. Duda, Peter
E. Hart, and David G. Stork, Pattern Classification. Copyright c© 2001 by John Wiley &
Sons, Inc.
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FIGURE 4.21. The pixel image of the handwritten 5 prototype at the lower left was
subjected to two transformations, rotation, and line thinning, to obtain the tangent vec-
tors TV1 and TV2; images corresponding to these tangent vectors are shown outside the
axes. Each of the 16 images within the axes represents the prototype plus linear combi-
nation of the two tangent vectors with coefficients a1 and a2. The small red number in
each image is the Euclidean distance between the tangent approximation and the image
generated by the unapproximated transformations. Of course, this Euclidean distance is
0 for the prototype and for the cases a1 = 1, a2 = 0 and a1 = 0, a2 = 1. (The patterns
generated with a1 + a2 > 1 have a gray background because of automatic grayscale
conversion of images with negative pixel values.) From: Richard O. Duda, Peter E. Hart,
and David G. Stork, Pattern Classification. Copyright c© 2001 by John Wiley & Sons,
Inc.
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FIGURE 4.22. A stored prototype x′, if transformed by combinations of two basic
transformations, would fall somewhere on a complicated curved surface in the full d-
dimensional space (gray). The tangent space at x′ is an r-dimensional Euclidean space,
spanned by the tangent vectors (here TV1 and TV2). The tangent distance Dtan(x′, x) is
the smallest Euclidean distance from x to the tangent space of x′, shown in the solid red
lines for two points, x1 and x2. Thus although the Euclidean distance from x′ to x1 is less
than that to x2, for the tangent distance the situation is reversed. The Euclidean distance
from x2 to the tangent space of x′ is a quadratic function of the parameter vector a, as
shown by the pink paraboloid. Thus simple gradient descent methods can find the opti-
mal vector a and hence the tangent distance Dtan(x′, x2). From: Richard O. Duda, Peter
E. Hart, and David G. Stork, Pattern Classification. Copyright c© 2001 by John Wiley &
Sons, Inc.
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FIGURE 4.23. “Category membership” functions, derived from the designer’s prior
knowledge, together with a conjunction rule lead to discriminants. In this figure, x might
represent an objectively measurable value such as the reflectivity of a fish’s skin. The de-
signer believes there are four relevant ranges, which might be called dark, medium-dark,
medium-light, and light. The designer believes there are four relevant ranges or “cate-
gories” for the reflectivity feature, which might be called dark, medium-dark, medium-
light, and light. The categories for the feature, of course, are not the same as the true
categories or classes for the patterns. From: Richard O. Duda, Peter E. Hart, and David
G. Stork, Pattern Classification. Copyright c© 2001 by John Wiley & Sons, Inc.
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FIGURE 4.24. “Category membership” functions and a conjunction rule based on the
designer’s prior knowledge lead to discriminant functions. Here x1 and x2 are objec-
tively measurable feature values. The designer believes that a particular class can be
described as the conjunction of two “category memberships,” here shown bold. Here
the conjunction rule of Eq. 61 is used to give the discriminant function. The resulting
discriminant function for the final category is indicated by the grayscale in the middle:
the greater the discriminant, the darker. The designer constructs discriminant functions
for other categories in a similar way (possibly also using disjunctions or other logical
relations). During classification, the maximum discriminant function is chosen. From:
Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright
c© 2001 by John Wiley & Sons, Inc.
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FIGURE 4.25. An RCE network is topologically equivalent to the PNN of Fig. 4.9. Dur-
ing training, normalized weights are adjusted to have the same values as the normalized
pattern presented, just as in a PNN. In this way, distances can be calculated by an inner
product. Pattern units in an RCE network also have a modifiable threshold correspond-
ing to a “radius” λ. During training, each threshold is adjusted so that its radius is as
large as possible without containing training patterns from a different category. From:
Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright
c© 2001 by John Wiley & Sons, Inc.
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FIGURE 4.26. During training of an RCE network, each pattern has a parameter—
equivalent to a radius in the d-dimensional space—that is adjusted to be as large as
possible without enclosing any points from a different category (up to a maximum λm).
As new patterns are presented, each such radius is decreased so that no sphere encloses
a pattern of a different category. In this way, each sphere can enclose only patterns
having the same category label. In this figure, the regions corresponding to one cate-
gory are pink, and the other category are gray. Ambiguous regions (those enclosed by
spheres of both categories) are shown in dark red. The number of points is shown in
each component figure. The figure at the bottom shows the final decision regions, col-
ored by category. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern
Classification. Copyright c© 2001 by John Wiley & Sons, Inc.


