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FIGURE 2.1. Hypothetical class-conditional probability density functions show the
probability density of measuring a particular feature value x given the pattern is in
category ωi . If x represents the lightness of a fish, the two curves might describe the
difference in lightness of populations of two types of fish. Density functions are normal-
ized, and thus the area under each curve is 1.0. From: Richard O. Duda, Peter E. Hart,
and David G. Stork, Pattern Classification. Copyright c© 2001 by John Wiley & Sons,
Inc.
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FIGURE 2.2. Posterior probabilities for the particular priors P(ω1) = 2/3 and P(ω2)

= 1/3 for the class-conditional probability densities shown in Fig. 2.1. Thus in this
case, given that a pattern is measured to have feature value x = 14, the probability it is
in category ω2 is roughly 0.08, and that it is in ω1 is 0.92. At every x, the posteriors sum
to 1.0. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification.
Copyright c© 2001 by John Wiley & Sons, Inc.
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FIGURE 2.3. The likelihood ratio p(x|ω1)/p(x|ω2) for the distributions shown in
Fig. 2.1. If we employ a zero-one or classification loss, our decision boundaries are
determined by the threshold θa. If our loss function penalizes miscategorizing ω2 as ω1

patterns more than the converse, we get the larger threshold θb, and hence R1 becomes
smaller. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classifica-
tion. Copyright c© 2001 by John Wiley & Sons, Inc.
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FIGURE 2.4. The curve at the bottom shows the minimum (Bayes) error as a function of
prior probability P(ω1) in a two-category classification problem of fixed distributions.
For each value of the priors (e.g., P(ω1) = 0.25) there is a corresponding optimal de-
cision boundary and associated Bayes error rate. For any (fixed) such boundary, if the
priors are then changed, the probability of error will change as a linear function of P(ω1)

(shown by the dashed line). The maximum such error will occur at an extreme value of
the prior, here at P(ω1) = 1. To minimize the maximum of such error, we should de-
sign our decision boundary for the maximum Bayes error (here P(ω1) = 0.6), and thus
the error will not change as a function of prior, as shown by the solid red horizontal
line. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification.
Copyright c© 2001 by John Wiley & Sons, Inc.
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FIGURE 2.5. The functional structure of a general statistical pattern classifier which
includes d inputs and c discriminant functions gi(x). A subsequent step determines
which of the discriminant values is the maximum, and categorizes the input pattern
accordingly. The arrows show the direction of the flow of information, though frequently
the arrows are omitted when the direction of flow is self-evident. From: Richard O.
Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright c© 2001 by
John Wiley & Sons, Inc.
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FIGURE 2.6. In this two-dimensional two-category classifier, the probability densities
are Gaussian, the decision boundary consists of two hyperbolas, and thus the decision
region R2 is not simply connected. The ellipses mark where the density is 1/e times
that at the peak of the distribution. From: Richard O. Duda, Peter E. Hart, and David G.
Stork, Pattern Classification. Copyright c© 2001 by John Wiley & Sons, Inc.
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FIGURE 2.7. A univariate normal distribution has roughly 95% of its area in the range
|x − µ| ≤ 2σ , as shown. The peak of the distribution has value p(µ) = 1/

√
2πσ . From:

Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright
c© 2001 by John Wiley & Sons, Inc.
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FIGURE 2.8. The action of a linear transformation on the feature space will con-
vert an arbitrary normal distribution into another normal distribution. One transforma-
tion, A, takes the source distribution into distribution N(At�, At�A). Another linear
transformation—a projection P onto a line defined by vector a—leads to N(µ, σ 2) mea-
sured along that line. While the transforms yield distributions in a different space, we
show them superimposed on the original x1x2-space. A whitening transform, Aw, leads
to a circularly symmetric Gaussian, here shown displaced. From: Richard O. Duda, Pe-
ter E. Hart, and David G. Stork, Pattern Classification. Copyright c© 2001 by John Wiley
& Sons, Inc.
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FIGURE 2.9. Samples drawn from a two-dimensional Gaussian lie in a cloud centered
on the mean �. The ellipses show lines of equal probability density of the Gaussian.
From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copy-
right c© 2001 by John Wiley & Sons, Inc.
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FIGURE 2.10. If the covariance matrices for two distributions are equal and proportional to the identity
matrix, then the distributions are spherical in d dimensions, and the boundary is a generalized hyperplane of
d − 1 dimensions, perpendicular to the line separating the means. In these one-, two-, and three-dimensional
examples, we indicate p(x|ωi) and the boundaries for the case P(ω1) = P(ω2). In the three-dimensional case,
the grid plane separates R1 from R2. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern
Classification. Copyright c© 2001 by John Wiley & Sons, Inc.
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FIGURE 2.11. As the priors are changed, the decision boundary shifts; for sufficiently
disparate priors the boundary will not lie between the means of these one-, two- and
three-dimensional spherical Gaussian distributions. From: Richard O. Duda, Peter E.
Hart, and David G. Stork, Pattern Classification. Copyright c© 2001 by John Wiley &
Sons, Inc.
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FIGURE 2.12. Probability densities (indicated by the surfaces in two dimensions and
ellipsoidal surfaces in three dimensions) and decision regions for equal but asymmet-
ric Gaussian distributions. The decision hyperplanes need not be perpendicular to the
line connecting the means. From: Richard O. Duda, Peter E. Hart, and David G. Stork,
Pattern Classification. Copyright c© 2001 by John Wiley & Sons, Inc.
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FIGURE 2.13. Non-simply connected decision regions can arise in one dimensions for
Gaussians having unequal variance. From: Richard O. Duda, Peter E. Hart, and David
G. Stork, Pattern Classification. Copyright c© 2001 by John Wiley & Sons, Inc.



FIGURE 2.14. Arbitrary Gaussian distributions lead to Bayes decision boundaries that
are general hyperquadrics. Conversely, given any hyperquadric, one can find two Gaus-
sian distributions whose Bayes decision boundary is that hyperquadric. These variances
are indicated by the contours of constant probability density. From: Richard O. Duda,
Peter E. Hart, and David G. Stork, Pattern Classification. Copyright c© 2001 by John
Wiley & Sons, Inc.
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FIGURE 2.15. Arbitrary three-dimensional Gaussian distributions yield Bayes decision boundaries that are
two-dimensional hyperquadrics. There are even degenerate cases in which the decision boundary is a line.
From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright c© 2001 by John
Wiley & Sons, Inc.
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FIGURE 2.16. The decision regions for four normal distributions. Even with such a low
number of categories, the shapes of the boundary regions can be rather complex. From:
Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright
c© 2001 by John Wiley & Sons, Inc.
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FIGURE 2.17. Components of the probability of error for equal priors and (nonoptimal)
decision point x∗. The pink area corresponds to the probability of errors for deciding ω1

when the state of nature is in fact ω2; the gray area represents the converse, as given in
Eq. 70. If the decision boundary is instead at the point of equal posterior probabilities,
xB, then this reducible error is eliminated and the total shaded area is the minimum
possible; this is the Bayes decision and gives the Bayes error rate. From: Richard O.
Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright c© 2001 by
John Wiley & Sons, Inc.
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FIGURE 2.18. The Chernoff error bound is never looser than the Bhattacharyya bound.
For this example, the Chernoff bound happens to be at β∗ = 0.66, and is slightly tighter
than the Bhattacharyya bound (β = 0.5). From: Richard O. Duda, Peter E. Hart, and
David G. Stork, Pattern Classification. Copyright c© 2001 by John Wiley & Sons, Inc.
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FIGURE 2.19. During any instant when no external pulse is present, the probability
density for an internal signal is normal, that is, p(x|ω1) ∼ N(µ1, σ 2); when the external
signal is present, the density is p(x|ω2) ∼ N(µ2, σ

2). Any decision threshold x∗ will
determine the probability of a hit (the pink area under the ω2 curve, above x∗) and of a
false alarm (the black area under the ω1 curve, above x∗). From: Richard O. Duda, Peter
E. Hart, and David G. Stork, Pattern Classification. Copyright c© 2001 by John Wiley &
Sons, Inc.
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FIGURE 2.20. In a receiver operating characteristic (ROC) curve, the abscissa is the
probability of false alarm, P(x > x∗|x ∈ ω1), and the ordinate is the probability of hit,
P(x > x∗|x ∈ ω2). From the measured hit and false alarm rates (here corresponding to
x∗ in Fig. 2.19 and shown as the red dot), we can deduce that d ′ = 3. From: Richard O.
Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright c© 2001 by
John Wiley & Sons, Inc.
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FIGURE 2.21. In a general operating characteristic curve, the abscissa is the probability
of false alarm, P(x ∈ R2|x ∈ ω1), and the ordinate is the probability of hit, P(x ∈ R2|x ∈
ω2). As illustrated here, operating characteristic curves are generally not symmetric, as
shown at the right. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern
Classification. Copyright c© 2001 by John Wiley & Sons, Inc.
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FIGURE 2.22. Four categories have equal priors and the class-conditional distributions
shown. If a test point is presented in which one feature is missing (here, x1) and the
other is measured to have value x̂2 (red dashed line), we want our classifier to classify
the pattern as category ω2, because p(x̂2|ω2) is the largest of the four likelihoods. From:
Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright
c© 2001 by John Wiley & Sons, Inc.
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FIGURE 2.23. A three-dimensional distribution which obeys p(x1, x3) = p(x1)p(x3);
thus here x1 and x3 are statistically independent but the other feature pairs are not. From:
Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright
c© 2001 by John Wiley & Sons, Inc.
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FIGURE 2.24. A belief network consists of nodes (labeled with uppercase bold letters)
and their associated discrete states (in lowercase). Thus node A has states a1, a2, . . . ,

denoted simply a; node B has states b1, b2, . . . , denoted b, and so forth. The links be-
tween nodes represent conditional probabilities. For example, P(c|a) can be described
by a matrix whose entries are P(ci|aj). From: Richard O. Duda, Peter E. Hart, and David
G. Stork, Pattern Classification. Copyright c© 2001 by John Wiley & Sons, Inc.
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FIGURE 2.25. A portion of a belief network, consisting of a node X, having variable
values (x1, x2, . . .), its parents (A and B), and its children (C and D). From: Richard O.
Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright c© 2001 by
John Wiley & Sons, Inc.


