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1 Introduction

So-called “naive” Bayesian classification is the optimal method of supervised learning if the val-
ues of the attributes of an example are independent given the class of the example. Although this
assumption is almost always violated in practice, recent work has shown that naive Bayesian learn-
ing is remarkably effective in practice and difficult to improve upon systematically [Domingos and
Pazzani, 1996].

On many real-world example datasets naive Bayesian learning gives better test set accuracy than
any other known method, including backpropagation and C4.5 decision trees. Also, these classifiers
can be learned very efficiently. Given � training examples over

�
attributes, the time required to

learn a boosted naive Bayesian classifier is ��� � ��� , i.e. linear. No learning algorithm that examines
all its training data can be faster.

2 A review of naive Bayesian learning

Let �	� through ��
 be attributes with discrete values used to predict a discrete class � . Given an
example with observed attribute values �� through �
 , the optimal prediction is class value � such
that ����������������������! #"$"$"% &��
���'
 � is maximal. By Bayes’ rule this probability equals
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The background probability or base rate �������.��� � can be estimated from training data easily. The
example probability �����(���/�)��0 "$"$"1 2��
3�)�
 � is irrelevant for decision-making since
it is the same for each class value � . Learning is therefore reduced to the problem of estimating
�����(�����4��5 6"$"$"� 7��
8�9'
��:�;�9� � from training examples. Using Bayes’ rule again, this
class-conditional probability can be written as
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Recursively, the second factor above can be written as
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and so on. Now suppose we assume for each ��� that its outcome is independent of the outcome of
all other ��� , given � . Formally, we assume that
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and so on for � = through ��
 . Then �����(� � �� �  #"$"$"� &��
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��+�-��� � equals
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Now each factor in the product above can be estimated from training data:
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It can be shown that Equation (1) gives “maximum likelihood” probability estimates, i.e. probability
parameter values that maximize the probability of the training examples.

The induction algorithm explained above is called naive Bayesian learning. One early reference
is Chapter 12 of the celebrated Perceptrons book by Minsky and Papert [1969].

3 Taking logarithms

Suppose that there are just two possible classes, called 0 and 1, and let  � through �
 be the observed
attribute values for a test example. Let ��� � �������7��� � , let � � � �������7��� � �������	� , let� �����������(��������>�+����� � , and let � �+�<�������(���,����,�$�-��� � . Then
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where % is a normalizing constant. Taking logarithms gives
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Letting 56�,� )+*-, � �+�7� )+*-, � �0� and ��� )+*-, � �4� )+*-, �	� gives
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Exponentiating both sides and rearranging gives
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In general, suppose the attribute �8� has  ��� � possible values. Let
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where ���������� ��� � . Then
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Here , is an indicator function: , �.- � ��� if - is true and ,��.- � ��� if - is false.
Naive Bayesian classification generalizes logistic regression, the most widely used statistical

method for probabilistic classification from numerical attribute values. Consider again Equation
(1). If � � has discrete values then ����
 ��$�(� � �) �  � �)� � can be computed directly from
training examples. If the values of �8� are numerical, the standard practice is to quantize or discretize
the attribute. The simplest quantization method is to divide the range of the attribute into a fixed
number / of equal-width bins. In the experiments described below / � ��� is chosen arbitrarily.
Previous experimental work has shown that the benefits of more complex quantization methods are
small at best [Dougherty et al., 1995]. Using bins of equal width tends to work well because they
allow good non-parametric approximation of skewed, multimodal, and/or heavy-tailed probability
distributions.

Let each ��� be a numerical (integer-valued or real-valued) attribute. Logistic regression assumes
the model
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This equation describes the functioning of a perceptron with a sigmoid activation function and a sin-
gle input node for each attribute, i.e. with attribute values encoded as their magnitude. Discretization
of ��� corresponds to replacing the linear term � �$�� by a piecewise constant function of -� . If the
range of ��� is divided into / intervals where the 0 th interval is 1 � � " � � � ' @ � �0�32 then this function is
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where each � � � is a constant. Combining Equations (3) and (4) yields a version of Equation (2).
Hence naive Bayesian classification is a nonparametric, nonlinear extension of logistic regression;
the standard logistic regression equation can be approximated by setting �0�0��� �(� � " � � � ' 1 � �0� � $ �.6-� � � "
4 Computational complexity

Suppose that examples are over
�

attributes, each with  values. Then a naive Bayesian classifier as
in Equation (2) has

�  1 � parameters. These parameters are learned by accumulating 6 �  1 6 counts.
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Each attribute value of each training example leads to incrementing exactly one count. Hence with� examples training time is � � � ��� independent of  . This time complexity is essentially optimal:
any learning algorithm that examines every attribute value of every training example must have
the same or worse complexity. For comparison, learning a decision tree without pruning requires
��� � � = � time. (The algorithm that underlies this result is non-trivial.) The time required to update
weights under boosting is also � � � ��� , so

�
rounds of boosting use � � � � ��� time in total, which is

also ��� � ��� if
�

is constant.
When accumulating the counts on which a naive Bayesian classifier is based, training examples

may be processed sequentially directly from disk or tape storage. The amount of random-access
memory required is � � �  � independent of the number of training examples. With boosting, the
random-access memory needed is ��� � �  � . Therefore, boosted naive Bayesian classifiers are well-
suited for knowledge discovery in very large databases: these databases can remain on disk or even
on tape, and need not fit into main memory.

It is straightforward to show that learning a boosted naive Bayesian classifier is in the parallel
complexity class NC. This class consists of problems that can be solved in polylogarithmic time
with a polynomial number of processors. With communication patterned after a binary tree of
height

)+*-, � , � processors can compute ����
�����(�8����  ����� � and ����
 ��$�(������  4�.��� � for
a given � and  in ��� )3*-, � � time. Therefore naive Bayesian learning requires � � )+*-, � � time using
��� � �  � processors.

In practice, with
�

and  constant and many examples allocated to each processor, a parallel
implementation could use far fewer than � processors and still run in � � )+*-, � � time. With a constant
number of rounds of boosting, boosted naive Bayesian learning is also in NC. A literature search
reveals that no other practical learning problem is known to have an NC algorithm.
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