
Signal Modeling

The idea of signal modeling is to represent the signal via (some) model
parameters.

Signal modeling is used for signal compression, prediction, reconstruction
and understanding.

Two generic model classes will be considered:

• ARMA, AR, and MA models,

• low-rank models.
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AR, MA, and ARMA equations

General ARMA equations:

N∑
k=0

aky(n− k) =
M∑

k=0

bkx(n− k) ARMA.

Particular cases:

y(n) =
M∑

k=0

bkx(n− k) MA,

N∑
k=0

aky(n− k) = x(n) AR.

Taking Z-transforms of both sides of the ARMA equation

N∑
k=0

akZ{y(n− k)} =
M∑

k=0

bkZ{x(n− k)}
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and using time-shift property, we obtain

Y (z)
N∑

k=0

akz
−k = X(z)

M∑
k=0

bkz
−k.

Therefore, the frequency response of causal LTI system (filter):

H(z) =
Y (z)
X(z)

=
∑M

k=0 bkz
−k∑N

k=0 akz−k
=

BM(z)
AN(z)

.
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Pole-zero Model

Modeling a signal y(n) as the response of a LTI filter to an input x(n).
The goal is to find the filter coefficients and the input x(n) that make the
modeled signal ŷ(n) as close as possible to y(n). The most general model
is the so-called pole-zero model:
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All-pole Modeling: Yule-Walker Equations
All-pole model:

H(z) =
σ

A(z)
.

Consider the real AR equation:

y(n) + a1y(n− 1) + · · ·+ aNy(n−N) = x(n)

(with a0 = 1) and assume that E {x(n)x(n− k)} = σ2δ(k). Since the AR
model implies that

y(n) = x(n) + α1x(n− 1) + α2x(n− 2) + · · ·

we get

E{y(n)x(n)} = E {[x(n) + α1x(n− 1) + α2x(n− 2) + · · · ]x(n)} = σ2.
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All-pole Modeling: Yule-Walker Equations

Similarly,

E {y(n− k)x(n)}=E {[x(n− k) + α1x(n− k − 1) + · · · ] x(n)}
=0 for k > 0.

Represent the AR equation in the vector form:

[y(n), y(n− 1), . . . , y(n−N)]


1
a1
...

aN

 = x(n).
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All-pole Modeling: Yule-Walker Equations

E {y(n)x(n)}=E

{
y(n) [y(n), y(n− 1), . . . , y(n−N)]


1
a1
...

aN


}

= [r0, r1, . . . , rN ]


1
a1
...

aN

 = σ2.
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All-pole Modeling: Yule-Walker Equations

E {y(n− k)x(n)}=E

{
y(n− k) [y(n), . . . , y(n−N)]


1
a1
...

aN


}

= [rk, rk−1, . . . , rk−N ]


1
a1
...

aN

 = 0 for k > 0.
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All-pole Modeling: Yule-Walker Equations


r0 r1 · · · rN

r1 r0 · · · rN−1
... ... ... ...

rN rN−1 · · · r0




1
a1
...

aN

 =


σ2

0
...
0


If we omit the first equation, we get

r0 r1 · · · rN−1

r1 r0 · · · rN−2
... ... ... ...

rN−1 rN−2 · · · r0




a1

a2
...

aN

 = −


r1

r2
...

rN

 ,

or, in matrix notation

Ra = −r Yule-Walker equations.
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Levinson Recursion

For this purpose, let us introduce a slightly different notation:


r0 r1 · · · rN

r1 r0 · · · rN−1
... ... ... ...

rN rN−1 · · · r0




1
aN,1

...
aN,N

 =


σ2

N

0
...
0


which, in matrix notation is

RNaN = σ2
Ne1,

where e1 = [1, 0, 0, . . . , 0]T .
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For N = 1, we have:

r0 + r1a1,1 = σ2
1,

r1 + r0a1,1 = 0,

and thus

a1,1 = −r1

r0
,

σ2
1 = r0

{
1−

[r1

r0

]2}
.
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Levinson Recursion (cont.)

Goal: Given aN , we want to find the solution to the (N + 1)st-order
equations RN+1aN+1 = σ2

N+1e1.

Append a zero to aN and multiply the resulting vector by RN+1:


r0 r1 · · · rN rN+1

r1 r0 · · · rN−1 rN
... ... ... ... ...

rN rN−1 · · · r0 r1

rN+1 rN · · · r1 r0




1
aN,1

...
aN,N

0

 =


σ2

N

0
...
0

γN

,

where γN = rN+1 +
∑N

k=1 aN,krN+1−k. Use the symmetric Toeplitz
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property of RN+1 to rewrite
r0 r1 · · · rN rN+1

r1 r0 · · · rN−1 rN
... ... ... ... ...

rN rN−1 · · · r0 r1

rN+1 rN · · · r1 r0




0
aN,N

...
aN,1

1

 =


γN

0
...
0

σ2
N

.

Now, make a weighted sum of the above two equations.

EE 524, # 7 13



Levinson Recursion (cont.)

RN+1




1

aN,1
...

aN,N

0

+ΓN+1


0

aN,N
...

aN,1

1


=


σ2

N

0
...
0

γN

 + ΓN+1


γN

0
...
0

σ2
N

.

Now, pick

ΓN+1 = −γN

σ2
N

,

which reduces the above equation to RN+1aN+1 = σ2
N+1e1, where

aN+1 =


1

aN,1
...

aN,N

0

+ΓN+1


0

aN,N
...

aN,1

1

 and σ2
N+1 = σ2

N+ΓN+1γN = σ2
N [1−Γ2

N+1].
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All-pole Modeling: Prony’s Method

Yule-Walker equations do not show an explicit way of finding the AR model
coefficients from the data.

Consider the AR equation:

y(n) = −
N∑

k=1

aky(n− k) + x(n),

written for L−N measured data points {y(n)}L−1
N . In matrix form:

y(N)
y(N + 1)

...
y(L− 1)

=−


y(N − 1) y(N − 2) · · · y(0)

y(N) y(N − 1) · · · y(1)
... ... ... ...

y(L− 2) · · · y(L−N − 1)




a1

a2
...

aN

 +


x(N)

x(N + 1)
...

x(L− 1)

 .
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All-pole Modeling: Prony’s Method

In matrix notation, the overdetermined system:

y = −Y a + x.
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All-pole Modeling: Prony’s Method
To find a solution, use LS, i.e. minimize

‖x‖2 = (y + Y a)H(y + Y a).

The solution is given by the normal equations:

Y HY a = −Y Hy.

Solving normal equations, we obtain a. Formally, solution can be written
as

a = −(Y HY )−1Y Hy.

Relationship between the Yule-Walker and normal (Prony) equations:

Ra = −r, Y HY a = −Y Hy,
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i.e.
R↔ Y HY r ↔ Y Hy.

In practice,
R̂ = Y HY r̂ = Y Hy

represent sample estimates of the exact covariance matrix R and covariance
vector r, respectively!
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Linear Prediction ↔ All-pole Models

Consider the problem of prediction of the future nth value y(n) of the process
using the linear predictor based on the previous values y(n−1), . . . , y(n−N):

ŷ(n) =
N∑

i=1

wiy(n− i) = wTy,

where w is the predictor weight vector and y is the signal vector

w =


w1

w2
...

wN

 , y =


y(n− 1)
y(n− 2)

...
y(n−N)

 .
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Linear Prediction ↔ All-pole Models
Minimize the Mean Square Error (MSE)

ε2 = E {[y(n)− ŷ(n)]2}
= E {[y − ŷ]2}
= E {[y −wTy]2}
= E {y2 − 2wTyy + wTyyTw}
= E {y2} − 2wTr + wTRw.

Taking the gradient, we obtain

∂ε2

∂w
= −2r + 2Rw = 0 =⇒ Rw = r

and we obtain Yule-Walker equations (w = −a)!

EE 524, # 7 20



• Order-recursive Levinson-Durbin algorithm can be used to compute
solutions to Yule-Walker (normal) equations (Toeplitz systems).

• The covariance (Prony) method can be modified to minimize the forward-
backward prediction errors (improved performance).

• AR (all-pole) models are very good for modeling narrowband (peaky)
signals.

• All-pole modeling is somewhat simpler than pole-zero modeling.
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All-zero Modeling

All-zero model
H(z) = B(z).

Consider the real MA equation:

y(n) =
M∑
i=0

bix(n− i).

How to find the MA coefficients?
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All-zero Modeling

One idea: find the MA coefficients through the coefficients of an auxiliary
higher-order AR model. We know that finite MA model can be approximated
by an infinite AR model:

BM(z) =
M∑

k=0

bkz
−k =

1
A∞(z)

.

Since AR(∞) is an idealization, let us take an auxiliary finite AR(N) model
with large N �M to find an approximation to the above equation:

BM(z) ≈ 1∑N
k=0 ak,auxz−k

.
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Clearly, the reverse equation also holds

AN,aux(z) ≈ 1
BM(z)

.

When the auxiliary AR coefficients are obtained, the last step is to find the
MA coefficients of the original MA model. This can be done by

min
b

{∫ π

−π

‖AN,aux(ejω)BM(ejω)− 1‖2dω

}
.
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Durbin’s Method

• Step 1: Given the MA(M) signal y(n), find for it an auxiliary high-order
AR(N) model with N �M using Yule-Walker or normal equations.

• Step 2: Using the AR coefficients obtained in the previous step, find the
coefficients of the MA(M) model for the signal y(n).
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Pole-zero Modeling: Modified Yule-Walker Method
Pole-zero model (for b0 = 1 and a0 = 1):

H(z) = σ
B(z)
A(z)

.

Let us consider the real ARMA equation:

y(n) +
N∑

i=1

aiy(n− i) = x(n) +
M∑
i=1

bix(n− i)

and assume that
E {x(n)x(n− k)} = σ2δ(k) :

Write the ARMA(N,M) model as MA(∞) equation:

y(n) = x(n) + β1x(n− 1) + β2x(n− 2) + · · ·
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Similar to the all-pole modeling case, we obtain that

E {y(n)x(n)} = σ2, E {y(n− k)x(n)} = 0 for k > 0.

ARMA equation can be rewritten in the vector form:

[y(n), y(n− 1), . . . , y(n−N)]


1
a1
...

aN



= [x(n), x(n− 1), . . . , x(n−M)]


1
b1
...

bM

 .
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Pole-zero Modeling: Modified Yule-Walker Method

Multiply both sides of the last equation with y(n− k) and take E {·}:

k = 0:

[r0, r1, . . . , rN ]


1
a1
...

aN

 = [σ2, σ2β1, . . . , σ
2βM ]


1
b1
...

bM

 .
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Pole-zero Modeling: Modified Yule-Walker Method
k = 1:

[r−1, r0, . . . , rN−1]


1
a1
...

aN

 = [0, σ2, σ2β1, . . . , σ
2βM−1]


1
b1
...

bM

 ,

. . . so on until k = M .

k ≥M + 1:

[r−k, r−k+1, . . . , r−k+N ]


1
a1
...

aN

 = [0, 0, . . . , 0]


1
b1
...

bM

 = 0.
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Pole-zero Modeling: Modified Yule-Walker Method

Therefore, we obtain the modified Yule-Walker equations:

 r−(M+1) r−(M) · · · r−(M+1)+N

r−(M+2) r−(M+1) · · · r−(M+2)+N
... ... ... ...




1
a1
...

aN

 = 0.

To solve for a1, . . . , aN , we need N equations:


rM+1 rM · · · rM−N+1

rM+2 rM+1 · · · rM−N+2
... ... ... ...

rM+N rM+N−1 · · · rM




1
a1
...

aN

 = 0,
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where we use r−k = rk. The matrix is N × (N + 1). Equivalent to
rM rM−1 · · · rM−N+1

rM+1 rM+1 · · · rM−N+2
... ... ... ...

rM+N−1 rM+N−2 · · · rM




a1

a2
...

aN

 = −


rM+1

rM+2
...

rM+N

 ,

with the square N ×N matrix. In matrix notation:

Ra = −r ← (modified Yule-Walker equations).
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Pole-zero Modeling (cont.)

Once the AR coefficients are determined, it remains to obtain the MA part
of the considered ARMA model. Write the ARMA power spectrum as

Py(z) = σ2B(z)B(1/z)
A(z)A(1/z)

z=exp(jω)
= σ2

∣∣∣∣B(ejω)
A(ejω)

∣∣∣∣2 .

Hence, filtering the ARMA process y(n) with the LTI filter having a transfer
function A(z) gives the MA part of the process, having the spectrum:

P (z) = B(z)B(1/z).

Then, the MA parameters of the ARMA process y(n) can be estimated from
this (filtered) MA process using all-zero modeling techniques (for example,
Durbin’s method).
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Digression: Rational Spectra

P (ejω) = σ2

∣∣∣∣B(ejω)
A(ejω)

∣∣∣∣2 .

Recall: we consider real-valued signals here.

• a1, . . . , aN , b1, . . . , bM are real coefficients.

• Any continuous power spectral density (PSD) can be approximated
arbitrarily close by a rational PSD. Consider passing x(n) ≡ zero-mean
white noise of variance σ2 through filter H.
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Digression: Rational Spectra (cont.)
The rational spectra can be associated with a signal obtained by filtering
white noise of power σ2 through a rational filter with H(ejω) =
B(ejω)/A(ejω). ARMA model: ARMA(M,N)

P (ejω) = σ2

∣∣∣∣B(ejω)
A(ejω)

∣∣∣∣2 .

AR model: AR(N)

P (ejω) = σ2

∣∣∣∣ 1
A(ejω)

∣∣∣∣2 .

MA model: MA(M)

P (ejω) = σ2
∣∣B(ejω)

∣∣2 .
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Remarks:

• AR models peaky PSD better,

• MA models valley PSD better,

• ARMA is used for PSD with both peaks and valleys.
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Spectral Factorization

H(ejω) =
B(ejω)
A(ejω)

.

P (ejω) = σ2

∣∣∣∣B(ejω)
A(ejω)

∣∣∣∣2 =
σ2B(ejω)B(e−jω)
A(ejω)A(e−jω)

A(ejω) = 1 + a1e
−jω + . . . + aMe−jMω.

a1, . . . , aN , b1, . . . , bM are real coefficients.

Remark: If a1, . . . , aN , b1, . . . , bM are complex,

P (z) = σ2B(z)B∗( 1
z∗)

A(z)A∗( 1
z∗)
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Spectral Factorization
Consider real case:

P (z) = σ2B(z)B(1
z)

A(z)A(1
z)

Remarks:

• If α is zero of P (z), so is 1
α.

• If β is a pole of P (z), so is 1
β .

• Since a1, . . . , aN , b1, . . . , bM are real, the poles and zeroes of P (z) occur
in complex conjugate pairs.
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Spectral Factorization

Remarks:

• If poles of 1
A(z) inside unit circle, H(z) = B(z)

A(z) is BIBO stable.

• If zeroes of B(z) inside unit circle, H(z) = B(z)
A(z) is minimum phase.

We choose H(z) so that both its zeroes and poles are inside the unit circle.
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Low-rank Models

A low-rank model for the data vector x:

x = As + n.

where A is the model basis matrix, s is the vector of model basis parameters,
and n is noise.

s is unknown, A is sometimes completely known (unknown), and sometimes
is known up to an unknown parameter vector θ.
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Low-rank Models
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Low-rank Models (cont.)

Case 1: A completely known. Then, conventional linear LS:

min
s
‖x− x̂‖2 = min

s
‖x−As‖2 =⇒

ŝ = (AHA)−1AHx.

This approach can be generalized for multiple snapshot case:

X = AS + N, X = [x1,x2, . . . ,xK],

S = [s1, s2, . . . , sK], N = [n1,n2, . . . ,nK].

min
S
‖X − X̂‖2 = min

S
‖X −AS‖2 =⇒

Ŝ = (AHA)−1AHX.
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Low-rank Models (cont.)
Case 2: A known up to unknown θ. Nonlinear LS:

min
s,θ
‖x− x̂‖2 = min

s,θ
‖x−A(θ)s‖2 =⇒

For fixed θ: ŝ = [AH(θ)A(θ)]−1AH(θ)x. Substituting this back into the
LS criterion:

min
θ

∥∥∥x−A(θ)[AH(θ)A(θ)]−1AH(θ)x
∥∥∥2

= min
θ

∥∥∥{
I −A(θ)[AH(θ)A(θ)]−1AH(θ)

}
x
∥∥∥2

= min
θ

∥∥∥P⊥A (θ)x
∥∥∥2

⇐⇒ max
θ

xHPA(θ)x.
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Low-rank Models (cont.)
Generalization to the multiple snapshot case:

min
S,θ
‖X − X̂‖2 = min

S,θ
‖X −A(θ)S‖2 =⇒

Ŝ = [AH(θ)A(θ)]−1AH(θ)X.

Substituting this back into the LS criterion:

min
θ

∥∥∥X −A(θ)[AH(θ)A(θ)]−1AH(θ)X
∥∥∥2

= min
θ

∥∥P⊥A (θ)X
∥∥2 = min

θ
tr{P⊥A (θ)XXHP⊥A (θ)}

= min
θ

tr{P⊥A (θ)2XXH}

= min
θ

tr{P⊥A (θ)XXH} ⇐⇒ max
θ

tr
{
PA(θ)XXH

}
.
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Low-rank Models (cont.)
Note that

XXH = [x1,x2, . . . ,xK]


xH

1

xH
2
...

xH
K

 =
K∑

k=1

xkx
H
k = KR̂,

where

R̂ =
1
K

K∑
k=1

xkx
H
k sample covariance matrix!

Therefore, the nonlinear LS objective functions can be rewritten as

min
θ

tr{P⊥A (θ)R̂} ⇐⇒ max
θ

tr
{
PA(θ)R̂

}
.
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Low-rank Models (cont.)
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Low-rank Models (cont.)

Case 3: A completely unknown.

In this case, a nice result exists, enabling low-rank modeling.

Theorem (Eckart and Young, 1936): Given arbitrary N × K (N > K)
matrix X with the SVD

X = UΛV H,

the best LS approximation of this matrix by a low-rank matrix X0 (L =
rank{X0} ≤ K) is given by

X̂0 = UΛ0V
H

where the matrix Λ0 is built from the matrix Λ by replacing the lowest
K − L singular values by zeroes.
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Low-rank Models (cont.)
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Low-rank Modeling of Data Matrix

1. Compute SVD of a given data matrix X,

2. Specify the model order L,

3. From the computed SVD, obtain the low-rank representation using the
Eckart and Young’s decomposition X0.
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