Signal Modeling

The idea of signal modeling is to represent the signal via (some) model parameters.

Signal modeling is used for signal compression, prediction, reconstruction and understanding.

Two generic model classes will be considered:

- ARMA, AR, and MA models,
- low-rank models.

AR, MA, and ARMA equations

General ARMA equations:

$$
\sum_{k=0}^{N} a_{k} y(n-k)=\sum_{k=0}^{M} b_{k} x(n-k) \quad \text { ARMA }
$$

Particular cases:

$$
y(n)=\sum_{k=0}^{M} b_{k} x(n-k) \quad \mathrm{MA}, \quad \sum_{k=0}^{N} a_{k} y(n-k)=x(n) \quad \mathrm{AR} .
$$

Taking Z-transforms of both sides of the ARMA equation

$$
\sum_{k=0}^{N} a_{k} \mathcal{Z}\{y(n-k)\}=\sum_{k=0}^{M} b_{k} \mathcal{Z}\{x(n-k)\}
$$

and using time-shift property, we obtain

$$
Y(z) \sum_{k=0}^{N} a_{k} z^{-k}=X(z) \sum_{k=0}^{M} b_{k} z^{-k}
$$

Therefore, the frequency response of causal LTI system (filter):

$$
H(z)=\frac{Y(z)}{X(z)}=\frac{\sum_{k=0}^{M} b_{k} z^{-k}}{\sum_{k=0}^{N} a_{k} z^{-k}}=\frac{B_{M}(z)}{A_{N}(z)}
$$

Pole-zero Model

Modeling a signal $y(n)$ as the response of a LTI filter to an input $x(n)$. The goal is to find the filter coefficients and the input $x(n)$ that make the modeled signal $\widehat{y}(n)$ as close as possible to $y(n)$. The most general model is the so-called pole-zero model:

All-pole Modeling: Yule-Walker Equations

All-pole model:

$$
H(z)=\frac{\sigma}{A(z)} .
$$

Consider the real AR equation:

$$
y(n)+a_{1} y(n-1)+\cdots+a_{N} y(n-N)=x(n)
$$

(with $a_{0}=1$) and assume that $\mathrm{E}\{x(n) x(n-k)\}=\sigma^{2} \delta(k)$. Since the AR model implies that

$$
y(n)=x(n)+\alpha_{1} x(n-1)+\alpha_{2} x(n-2)+\cdots
$$

we get

$$
\mathrm{E}\{y(n) x(n)\}=\mathrm{E}\left\{\left[x(n)+\alpha_{1} x(n-1)+\alpha_{2} x(n-2)+\cdots\right] x(n)\right\}=\sigma^{2} .
$$

All-pole Modeling: Yule-Walker Equations

Similarly,

$$
\begin{aligned}
\mathrm{E}\{y(n-k) x(n)\} & =\mathrm{E}\left\{\left[x(n-k)+\alpha_{1} x(n-k-1)+\cdots\right] x(n)\right\} \\
& =0 \quad \text { for } k>0 .
\end{aligned}
$$

Represent the AR equation in the vector form:

$$
[y(n), y(n-1), \ldots, y(n-N)]\left[\begin{array}{c}
1 \\
a_{1} \\
\vdots \\
a_{N}
\end{array}\right]=x(n)
$$

All-pole Modeling: Yule-Walker Equations

$$
\begin{gathered}
\mathrm{E}\{y(n) x(n)\}=\mathrm{E}\left\{y(n)[y(n), y(n-1), \ldots, y(n-N)]\left[\begin{array}{c}
1 \\
a_{1} \\
\vdots \\
a_{N}
\end{array}\right]\right\} \\
=\left[r_{0}, r_{1}, \ldots, r_{N}\right]\left[\begin{array}{c}
1 \\
a_{1} \\
\vdots \\
a_{N}
\end{array}\right]=\sigma^{2}
\end{gathered}
$$

All-pole Modeling: Yule-Walker Equations

$$
\begin{gathered}
\mathrm{E}\{y(n-k) x(n)\}=\mathrm{E}\left\{y(n-k)[y(n), \ldots, y(n-N)]\left[\begin{array}{c}
1 \\
a_{1} \\
\vdots \\
a_{N}
\end{array}\right]\right\} \\
=\left[r_{k}, r_{k-1}, \ldots, r_{k-N}\right]\left[\begin{array}{c}
1 \\
a_{1} \\
\vdots \\
a_{N}
\end{array}\right]=0 \quad \text { for } k>0
\end{gathered}
$$

All-pole Modeling: Yule-Walker Equations

$$
\left[\begin{array}{cccc}
r_{0} & r_{1} & \cdots & r_{N} \\
r_{1} & r_{0} & \cdots & r_{N-1} \\
\vdots & \vdots & \vdots & \vdots \\
r_{N} & r_{N-1} & \cdots & r_{0}
\end{array}\right]\left[\begin{array}{c}
1 \\
a_{1} \\
\vdots \\
a_{N}
\end{array}\right]=\left[\begin{array}{c}
\sigma^{2} \\
0 \\
\vdots \\
0
\end{array}\right]
$$

If we omit the first equation, we get

$$
\left[\begin{array}{cccc}
r_{0} & r_{1} & \cdots & r_{N-1} \\
r_{1} & r_{0} & \cdots & r_{N-2} \\
\vdots & \vdots & \vdots & \vdots \\
r_{N-1} & r_{N-2} & \cdots & r_{0}
\end{array}\right]\left[\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{N}
\end{array}\right]=-\left[\begin{array}{c}
r_{1} \\
r_{2} \\
\vdots \\
r_{N}
\end{array}\right]
$$

or, in matrix notation

$$
R a=-\boldsymbol{r} \quad \text { Yule-Walker equations. }
$$

Levinson Recursion

For this purpose, let us introduce a slightly different notation:

$$
\left[\begin{array}{cccc}
r_{0} & r_{1} & \cdots & r_{N} \\
r_{1} & r_{0} & \cdots & r_{N-1} \\
\vdots & \vdots & \vdots & \vdots \\
r_{N} & r_{N-1} & \cdots & r_{0}
\end{array}\right]\left[\begin{array}{c}
1 \\
a_{N, 1} \\
\vdots \\
a_{N, N}
\end{array}\right]=\left[\begin{array}{c}
\sigma_{N}^{2} \\
0 \\
\vdots \\
0
\end{array}\right]
$$

which, in matrix notation is

$$
R_{N} \boldsymbol{a}_{N}=\sigma_{N}^{2} \boldsymbol{e}_{1}
$$

where $\boldsymbol{e}_{1}=[1,0,0, \ldots, 0]^{T}$.

For $N=1$, we have:

$$
\begin{aligned}
r_{0}+r_{1} a_{1,1} & =\sigma_{1}^{2} \\
r_{1}+r_{0} a_{1,1} & =0
\end{aligned}
$$

and thus

$$
\begin{aligned}
a_{1,1} & =-\frac{r_{1}}{r_{0}} \\
\sigma_{1}^{2} & =r_{0}\left\{1-\left[\frac{r_{1}}{r_{0}}\right]^{2}\right\}
\end{aligned}
$$

Levinson Recursion (cont.)

Goal: Given \boldsymbol{a}_{N}, we want to find the solution to the ($N+1$)st-order equations $R_{N+1} \boldsymbol{a}_{N+1}=\sigma_{N+1}^{2} \boldsymbol{e}_{1}$.

Append a zero to \boldsymbol{a}_{N} and multiply the resulting vector by R_{N+1} :

$$
\left[\begin{array}{ccccc}
r_{0} & r_{1} & \cdots & r_{N} & r_{N+1} \\
r_{1} & r_{0} & \cdots & r_{N-1} & r_{N} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
r_{N} & r_{N-1} & \cdots & r_{0} & r_{1} \\
r_{N+1} & r_{N} & \cdots & r_{1} & r_{0}
\end{array}\right]\left[\begin{array}{c}
1 \\
a_{N, 1} \\
\vdots \\
a_{N, N} \\
0
\end{array}\right]=\left[\begin{array}{c}
\sigma_{N}^{2} \\
0 \\
\vdots \\
0 \\
\gamma_{N}
\end{array}\right]
$$

where $\gamma_{N}=r_{N+1}+\sum_{k=1}^{N} a_{N, k} r_{N+1-k}$. Use the symmetric Toeplitz
property of R_{N+1} to rewrite

$$
\left[\begin{array}{ccccc}
r_{0} & r_{1} & \cdots & r_{N} & r_{N+1} \\
r_{1} & r_{0} & \cdots & r_{N-1} & r_{N} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
r_{N} & r_{N-1} & \cdots & r_{0} & r_{1} \\
r_{N+1} & r_{N} & \cdots & r_{1} & r_{0}
\end{array}\right]\left[\begin{array}{c}
0 \\
a_{N, N} \\
\vdots \\
a_{N, 1} \\
1
\end{array}\right]=\left[\begin{array}{c}
\gamma_{N} \\
0 \\
\vdots \\
0 \\
\sigma_{N}^{2}
\end{array}\right]
$$

Now, make a weighted sum of the above two equations.

Levinson Recursion (cont.)

$R_{N+1}\left\{\left[\begin{array}{c}1 \\ a_{N, 1} \\ \vdots \\ a_{N, N} \\ 0\end{array}\right]+\Gamma_{N+1}\left[\begin{array}{c}0 \\ a_{N, N} \\ \vdots \\ a_{N, 1} \\ 1\end{array}\right]\right\}=\left[\begin{array}{c}\sigma_{N}^{2} \\ 0 \\ \vdots \\ 0 \\ \gamma_{N}\end{array}\right]+\Gamma_{N+1}\left[\begin{array}{c}\gamma_{N} \\ 0 \\ \vdots \\ 0 \\ \sigma_{N}^{2}\end{array}\right]$.
Now, pick

$$
\Gamma_{N+1}=-\frac{\gamma_{N}}{\sigma_{N}^{2}}
$$

which reduces the above equation to $R_{N+1} \boldsymbol{a}_{N+1}=\sigma_{N+1}^{2} \boldsymbol{e}_{1}$, where
$\boldsymbol{a}_{N+1}=\left[\begin{array}{c}1 \\ a_{N, 1} \\ \vdots \\ a_{N, N} \\ 0\end{array}\right]+\Gamma_{N+1}\left[\begin{array}{c}0 \\ a_{N, N} \\ \vdots \\ a_{N, 1} \\ 1\end{array}\right] \quad$ and $\quad \sigma_{N+1}^{2}=\sigma_{N}^{2}+\Gamma_{N+1} \gamma_{N}=\sigma_{N}^{2}\left[1-\Gamma_{N+1}^{2}\right]$.

All-pole Modeling: Prony's Method

Yule-Walker equations do not show an explicit way of finding the AR model coefficients from the data.

Consider the AR equation:

$$
y(n)=-\sum_{k=1}^{N} a_{k} y(n-k)+x(n)
$$

written for $L-N$ measured data points $\{y(n)\}_{N}^{L-1}$. In matrix form:

$$
\left[\begin{array}{c}
y(N) \\
y(N+1) \\
\vdots \\
y(L-1)
\end{array}\right]=-\left[\begin{array}{cccc}
y(N-1) & y(N-2) & \cdots & y(0) \\
y(N) & y(N-1) & \cdots & y(1) \\
\vdots & \vdots & \vdots & \vdots \\
y(L-2) & & \cdots & y(L-N-1)
\end{array}\right]\left[\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{N}
\end{array}\right]+\left[\begin{array}{c}
x(N) \\
x(N+1) \\
\vdots \\
x(L-1)
\end{array}\right]
$$

All-pole Modeling: Prony's Method

In matrix notation, the overdetermined system:

$$
\boldsymbol{y}=-Y \boldsymbol{a}+\boldsymbol{x}
$$

All-pole Modeling: Prony’s Method

To find a solution, use LS, i.e. minimize

$$
\|\boldsymbol{x}\|^{2}=(\boldsymbol{y}+Y \boldsymbol{a})^{H}(\boldsymbol{y}+Y \boldsymbol{a}) .
$$

The solution is given by the normal equations:

$$
Y^{H} Y \boldsymbol{a}=-Y^{H} \boldsymbol{y} .
$$

Solving normal equations, we obtain \boldsymbol{a}. Formally, solution can be written as

$$
\boldsymbol{a}=-\left(Y^{H} Y\right)^{-1} Y^{H} \boldsymbol{y}
$$

Relationship between the Yule-Walker and normal (Prony) equations:

$$
R \boldsymbol{a}=-\boldsymbol{r}, \quad Y^{H} Y \boldsymbol{a}=-Y^{H} \boldsymbol{y}
$$

i.e.

$$
R \leftrightarrow Y^{H} Y \quad r \leftrightarrow Y^{H} \boldsymbol{y}
$$

In practice,

$$
\widehat{R}=Y^{H} Y \quad \widehat{r}=Y^{H} \boldsymbol{y}
$$

represent sample estimates of the exact covariance matrix R and covariance vector \boldsymbol{r}, respectively!

Linear Prediction \leftrightarrow All-pole Models

Consider the problem of prediction of the future nth value $y(n)$ of the process using the linear predictor based on the previous values $y(n-1), \ldots, y(n-N)$:

$$
\widehat{y}(n)=\sum_{i=1}^{N} w_{i} y(n-i)=\boldsymbol{w}^{T} \boldsymbol{y}
$$

where \boldsymbol{w} is the predictor weight vector and \boldsymbol{y} is the signal vector

$$
\boldsymbol{w}=\left[\begin{array}{c}
w_{1} \\
w_{2} \\
\vdots \\
w_{N}
\end{array}\right], \quad \boldsymbol{y}=\left[\begin{array}{c}
y(n-1) \\
y(n-2) \\
\vdots \\
y(n-N)
\end{array}\right]
$$

Linear Prediction \leftrightarrow All-pole Models

Minimize the Mean Square Error (MSE)

$$
\begin{aligned}
\epsilon^{2} & =\mathrm{E}\left\{[y(n)-\widehat{y}(n)]^{2}\right\} \\
& =\mathrm{E}\left\{[y-\widehat{y}]^{2}\right\} \\
& =\mathrm{E}\left\{\left[y-\boldsymbol{w}^{T} \boldsymbol{y}\right]^{2}\right\} \\
& =\mathrm{E}\left\{y^{2}-2 \boldsymbol{w}^{T} \boldsymbol{y} y+\boldsymbol{w}^{T} \boldsymbol{y} \boldsymbol{y}^{T} \boldsymbol{w}\right\} \\
& =\mathrm{E}\left\{y^{2}\right\}-2 \boldsymbol{w}^{T} \boldsymbol{r}+\boldsymbol{w}^{T} R \boldsymbol{w}
\end{aligned}
$$

Taking the gradient, we obtain

$$
\frac{\partial \epsilon^{2}}{\partial \boldsymbol{w}}=-2 \boldsymbol{r}+2 R \boldsymbol{w}=0 \quad \Longrightarrow \quad R \boldsymbol{w}=\boldsymbol{r}
$$

and we obtain Yule-Walker equations $(\boldsymbol{w}=-\boldsymbol{a})$!

- Order-recursive Levinson-Durbin algorithm can be used to compute solutions to Yule-Walker (normal) equations (Toeplitz systems).
- The covariance (Prony) method can be modified to minimize the forwardbackward prediction errors (improved performance).
- AR (all-pole) models are very good for modeling narrowband (peaky) signals.
- All-pole modeling is somewhat simpler than pole-zero modeling.

All-zero Modeling

All-zero model

$$
H(z)=B(z) .
$$

Consider the real MA equation:

$$
y(n)=\sum_{i=0}^{M} b_{i} x(n-i)
$$

How to find the MA coefficients?

All-zero Modeling

One idea: find the MA coefficients through the coefficients of an auxiliary higher-order AR model. We know that finite MA model can be approximated by an infinite AR model:

$$
B_{M}(z)=\sum_{k=0}^{M} b_{k} z^{-k}=\frac{1}{A_{\infty}(z)} .
$$

Since $\operatorname{AR}(\infty)$ is an idealization, let us take an auxiliary finite $\operatorname{AR}(N)$ model with large $N \gg M$ to find an approximation to the above equation:

$$
B_{M}(z) \approx \frac{1}{\sum_{k=0}^{N} a_{k, \mathrm{aux}} z^{-k}} .
$$

Clearly, the reverse equation also holds

$$
A_{N, \mathrm{aux}}(z) \approx \frac{1}{B_{M}(z)}
$$

When the auxiliary AR coefficients are obtained, the last step is to find the MA coefficients of the original MA model. This can be done by

$$
\min _{\boldsymbol{b}}\left\{\int_{-\pi}^{\pi}\left\|A_{N, \text { aux }}\left(e^{j \omega}\right) B_{M}\left(e^{j \omega}\right)-1\right\|^{2} d \omega\right\}
$$

Durbin's Method

- Step 1: Given the MA (M) signal $y(n)$, find for it an auxiliary high-order $\operatorname{AR}(N)$ model with $N \gg M$ using Yule-Walker or normal equations.
- Step 2: Using the AR coefficients obtained in the previous step, find the coefficients of the MA(M) model for the signal $y(n)$.

Pole-zero Modeling: Modified Yule-Walker Method

Pole-zero model (for $b_{0}=1$ and $a_{0}=1$):

$$
H(z)=\sigma \frac{B(z)}{A(z)}
$$

Let us consider the real ARMA equation:

$$
y(n)+\sum_{i=1}^{N} a_{i} y(n-i)=x(n)+\sum_{i=1}^{M} b_{i} x(n-i)
$$

and assume that

$$
\mathrm{E}\{x(n) x(n-k)\}=\sigma^{2} \delta(k):
$$

Write the $\operatorname{ARMA}(N, M)$ model as $\operatorname{MA}(\infty)$ equation:

$$
y(n)=x(n)+\beta_{1} x(n-1)+\beta_{2} x(n-2)+\cdots
$$

Similar to the all-pole modeling case, we obtain that

$$
\mathrm{E}\{y(n) x(n)\}=\sigma^{2}, \quad \mathrm{E}\{y(n-k) x(n)\}=0 \quad \text { for } k>0 .
$$

ARMA equation can be rewritten in the vector form:

$$
\begin{aligned}
& {[y(n), y(n-1), \ldots, y(n-N)]\left[\begin{array}{c}
1 \\
a_{1} \\
\vdots \\
a_{N}
\end{array}\right] } \\
= & {[x(n), x(n-1), \ldots, x(n-M)]\left[\begin{array}{c}
1 \\
b_{1} \\
\vdots \\
b_{M}
\end{array}\right] . }
\end{aligned}
$$

Pole-zero Modeling: Modified Yule-Walker Method

Multiply both sides of the last equation with $y(n-k)$ and take $\mathrm{E}\{\cdot\}$:
$k=0:$

$$
\left[r_{0}, r_{1}, \ldots, r_{N}\right]\left[\begin{array}{c}
1 \\
a_{1} \\
\vdots \\
a_{N}
\end{array}\right]=\left[\sigma^{2}, \sigma^{2} \beta_{1}, \ldots, \sigma^{2} \beta_{M}\right]\left[\begin{array}{c}
1 \\
b_{1} \\
\vdots \\
b_{M}
\end{array}\right] .
$$

Pole-zero Modeling: Modified Yule-Walker Method $k=1$:

$$
\left[r_{-1}, r_{0}, \ldots, r_{N-1}\right]\left[\begin{array}{c}
1 \\
a_{1} \\
\vdots \\
a_{N}
\end{array}\right]=\left[0, \sigma^{2}, \sigma^{2} \beta_{1}, \ldots, \sigma^{2} \beta_{M-1}\right]\left[\begin{array}{c}
1 \\
b_{1} \\
\vdots \\
b_{M}
\end{array}\right]
$$

\ldots so on until $k=M$.
$k \geq M+1$:

$$
\left[r_{-k}, r_{-k+1}, \ldots, r_{-k+N}\right]\left[\begin{array}{c}
1 \\
a_{1} \\
\vdots \\
a_{N}
\end{array}\right]=[0,0, \ldots, 0]\left[\begin{array}{c}
1 \\
b_{1} \\
\vdots \\
b_{M}
\end{array}\right]=\mathbf{0}
$$

Pole-zero Modeling: Modified Yule-Walker Method

Therefore, we obtain the modified Yule-Walker equations:

$$
\left[\begin{array}{cccc}
r_{-(M+1)} & r_{-(M)} & \cdots & r_{-(M+1)+N} \\
r_{-(M+2)} & r_{-(M+1)} & \cdots & r_{-(M+2)+N} \\
\vdots & \vdots & \vdots & \vdots
\end{array}\right]\left[\begin{array}{c}
1 \\
a_{1} \\
\vdots \\
a_{N}
\end{array}\right]=\mathbf{0} .
$$

To solve for a_{1}, \ldots, a_{N}, we need N equations:

$$
\left[\begin{array}{cccc}
r_{M+1} & r_{M} & \cdots & r_{M-N+1} \\
r_{M+2} & r_{M+1} & \cdots & r_{M-N+2} \\
\vdots & \vdots & \vdots & \vdots \\
r_{M+N} & r_{M+N-1} & \cdots & r_{M}
\end{array}\right]\left[\begin{array}{c}
1 \\
a_{1} \\
\vdots \\
a_{N}
\end{array}\right]=\mathbf{0}
$$

where we use $r_{-k}=r_{k}$. The matrix is $N \times(N+1)$. Equivalent to $\left[\begin{array}{cccc}r_{M} & r_{M-1} & \cdots & r_{M-N+1} \\ r_{M+1} & r_{M+1} & \cdots & r_{M-N+2} \\ \vdots & \vdots & \vdots & \vdots \\ r_{M+N-1} & r_{M+N-2} & \cdots & r_{M}\end{array}\right]\left[\begin{array}{c}a_{1} \\ a_{2} \\ \vdots \\ a_{N}\end{array}\right]=-\left[\begin{array}{c}r_{M+1} \\ r_{M+2} \\ \vdots \\ r_{M+N}\end{array}\right]$,
with the square $N \times N$ matrix. In matrix notation:

$$
R \boldsymbol{a}=-\boldsymbol{r} \quad \leftarrow \quad \text { (modified Yule-Walker equations) }
$$

Pole-zero Modeling (cont.)

Once the AR coefficients are determined, it remains to obtain the MA part of the considered ARMA model. Write the ARMA power spectrum as

$$
P_{y}(z)=\sigma^{2} \frac{B(z) B(1 / z)}{A(z) A(1 / z)} \stackrel{z=\exp (j \omega)}{=} \sigma^{2}\left|\frac{B\left(e^{j \omega}\right)}{A\left(e^{j \omega}\right)}\right|^{2}
$$

Hence, filtering the ARMA process $y(n)$ with the LTI filter having a transfer function $A(z)$ gives the MA part of the process, having the spectrum:

$$
P(z)=B(z) B(1 / z)
$$

Then, the MA parameters of the ARMA process $y(n)$ can be estimated from this (filtered) MA process using all-zero modeling techniques (for example, Durbin's method).

Digression: Rational Spectra

$$
P\left(e^{j \omega}\right)=\sigma^{2}\left|\frac{B\left(e^{j \omega}\right)}{A\left(e^{j \omega}\right)}\right|^{2}
$$

Recall: we consider real-valued signals here.

- $a_{1}, \ldots, a_{N}, b_{1}, \ldots, b_{M}$ are real coefficients.
- Any continuous power spectral density (PSD) can be approximated arbitrarily close by a rational PSD. Consider passing $x(n) \equiv$ zero-mean white noise of variance σ^{2} through filter H.

$$
x(n) \quad H\left(e^{j \mu}\right)=\frac{B_{M}\left(e^{j r}\right)}{A_{N}\left(e^{j-1}\right)} \quad y(n)
$$

Digression: Rational Spectra (cont.)

The rational spectra can be associated with a signal obtained by filtering white noise of power σ^{2} through a rational filter with $H\left(e^{j \omega}\right)=$ $B\left(e^{j \omega}\right) / A\left(e^{j \omega}\right)$. ARMA model: ARMA(M,N)

$$
P\left(e^{j \omega}\right)=\sigma^{2}\left|\frac{B\left(e^{j \omega}\right)}{A\left(e^{j \omega}\right)}\right|^{2}
$$

AR model: AR(N)

$$
P\left(e^{j \omega}\right)=\sigma^{2}\left|\frac{1}{A\left(e^{j \omega}\right)}\right|^{2}
$$

MA model: MA(M)

$$
P\left(e^{j \omega}\right)=\sigma^{2}\left|B\left(e^{j \omega}\right)\right|^{2}
$$

Remarks:

- AR models peaky PSD better,
- MA models valley PSD better,
- ARMA is used for PSD with both peaks and valleys.

Spectral Factorization

$$
\begin{gathered}
H\left(e^{j \omega}\right)=\frac{B\left(e^{j \omega}\right)}{A\left(e^{j \omega}\right)} \\
P\left(e^{j \omega}\right)=\sigma^{2}\left|\frac{B\left(e^{j \omega}\right)}{A\left(e^{j \omega}\right)}\right|^{2}=\frac{\sigma^{2} B\left(e^{j \omega}\right) B\left(e^{-j \omega}\right)}{A\left(e^{j \omega}\right) A\left(e^{-j \omega}\right)} \\
A\left(e^{j \omega}\right)=1+a_{1} e^{-j \omega}+\ldots+a_{M} e^{-j M \omega}
\end{gathered}
$$

$a_{1}, \ldots, a_{N}, b_{1}, \ldots, b_{M}$ are real coefficients.
Remark: If $a_{1}, \ldots, a_{N}, b_{1}, \ldots, b_{M}$ are complex,

$$
P(z)=\sigma^{2} \frac{B(z) B^{*}\left(\frac{1}{z^{*}}\right)}{A(z) A^{*}\left(\frac{1}{z^{*}}\right)}
$$

Spectral Factorization

Consider real case:

$$
P(z)=\sigma^{2} \frac{B(z) B\left(\frac{1}{z}\right)}{A(z) A\left(\frac{1}{z}\right)}
$$

Remarks:

- If α is zero of $P(z)$, so is $\frac{1}{\alpha}$.
- If β is a pole of $P(z)$, so is $\frac{1}{\beta}$.
- Since $a_{1}, \ldots, a_{N}, b_{1}, \ldots, b_{M}$ are real, the poles and zeroes of $P(z)$ occur in complex conjugate pairs.

Spectral Factorization

Remarks:

- If poles of $\frac{1}{A(z)}$ inside unit circle, $H(z)=\frac{B(z)}{A(z)}$ is BIBO stable.
- If zeroes of $B(z)$ inside unit circle, $H(z)=\frac{B(z)}{A(z)}$ is minimum phase.

We choose $H(z)$ so that both its zeroes and poles are inside the unit circle.

Low-rank Models

A low-rank model for the data vector \boldsymbol{x} :

$$
\boldsymbol{x}=A \boldsymbol{s}+\boldsymbol{n} .
$$

where A is the model basis matrix, s is the vector of model basis parameters, and \boldsymbol{n} is noise.
s is unknown, A is sometimes completely known (unknown), and sometimes is known up to an unknown parameter vector $\boldsymbol{\theta}$.

Low-rank Models (cont.)

Case 1: A completely known. Then, conventional linear LS:

$$
\begin{gathered}
\min _{\boldsymbol{s}}\|\boldsymbol{x}-\widehat{\boldsymbol{x}}\|^{2}=\min _{\boldsymbol{s}}\|\boldsymbol{x}-A \boldsymbol{s}\|^{2} \Longrightarrow \\
\widehat{\boldsymbol{s}}=\left(A^{H} A\right)^{-1} A^{H} \boldsymbol{x}
\end{gathered}
$$

This approach can be generalized for multiple snapshot case:

$$
\begin{array}{r}
X=A S+N, \quad X=\left[\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{K}\right], \\
S=\left[s_{1}, \boldsymbol{s}_{2}, \ldots, \boldsymbol{s}_{K}\right], \quad N=\left[\boldsymbol{n}_{1}, \boldsymbol{n}_{2}, \ldots, \boldsymbol{n}_{K}\right] . \\
\min _{S}\|X-\widehat{X}\|^{2}=\min _{S}\|X-A S\|^{2} \quad \Longrightarrow \\
\widehat{S}=\left(A^{H} A\right)^{-1} A^{H} X .
\end{array}
$$

Low-rank Models (cont.)

Case 2: A known up to unknown $\boldsymbol{\theta}$. Nonlinear LS:

$$
\min _{\boldsymbol{s}, \boldsymbol{\theta}}\|\boldsymbol{x}-\widehat{\boldsymbol{x}}\|^{2}=\min _{\boldsymbol{s}, \boldsymbol{\theta}}\|\boldsymbol{x}-A(\boldsymbol{\theta}) \boldsymbol{s}\|^{2} \Longrightarrow
$$

For fixed $\boldsymbol{\theta}$: $\widehat{\boldsymbol{s}}=\left[A^{H}(\boldsymbol{\theta}) A(\boldsymbol{\theta})\right]^{-1} A^{H}(\boldsymbol{\theta}) \boldsymbol{x}$. Substituting this back into the LS criterion:

$$
\begin{aligned}
& \min _{\boldsymbol{\theta}}\left\|\boldsymbol{x}-A(\boldsymbol{\theta})\left[A^{H}(\boldsymbol{\theta}) A(\boldsymbol{\theta})\right]^{-1} A^{H}(\boldsymbol{\theta}) \boldsymbol{x}\right\|^{2} \\
= & \min _{\boldsymbol{\theta}}\left\|\left\{I-A(\boldsymbol{\theta})\left[A^{H}(\boldsymbol{\theta}) A(\boldsymbol{\theta})\right]^{-1} A^{H}(\boldsymbol{\theta})\right\} \boldsymbol{x}\right\|^{2} \\
= & \min _{\boldsymbol{\theta}}\left\|P_{A}^{\perp}(\boldsymbol{\theta}) \boldsymbol{x}\right\|^{2} \Longleftrightarrow \max _{\boldsymbol{\theta}} \boldsymbol{x}^{H} P_{A}(\boldsymbol{\theta}) \boldsymbol{x} .
\end{aligned}
$$

Low-rank Models (cont.)

Generalization to the multiple snapshot case:

$$
\begin{gathered}
\min _{S, \boldsymbol{\theta}}\|X-\widehat{X}\|^{2}=\min _{S, \boldsymbol{\theta}}\|X-A(\boldsymbol{\theta}) S\|^{2} \Longrightarrow \\
\widehat{S}=\left[A^{H}(\boldsymbol{\theta}) A(\boldsymbol{\theta})\right]^{-1} A^{H}(\boldsymbol{\theta}) X
\end{gathered}
$$

Substituting this back into the LS criterion:

$$
\begin{aligned}
& \min _{\boldsymbol{\theta}}\left\|X-A(\boldsymbol{\theta})\left[A^{H}(\boldsymbol{\theta}) A(\boldsymbol{\theta})\right]^{-1} A^{H}(\boldsymbol{\theta}) X\right\|^{2} \\
= & \min _{\boldsymbol{\theta}}\left\|P_{A}^{\perp}(\boldsymbol{\theta}) X\right\|^{2}=\min _{\boldsymbol{\theta}} \operatorname{tr}\left\{P_{A}^{\perp}(\boldsymbol{\theta}) X X^{H} P_{A}^{\perp}(\boldsymbol{\theta})\right\} \\
= & \min _{\boldsymbol{\theta}} \operatorname{tr}\left\{P_{A}^{\perp}(\boldsymbol{\theta})^{2} X X^{H}\right\} \\
= & \min _{\boldsymbol{\theta}} \operatorname{tr}\left\{P_{A}^{\perp}(\boldsymbol{\theta}) X X^{H}\right\} \Longleftrightarrow \max _{\boldsymbol{\theta}} \operatorname{tr}\left\{P_{A}(\boldsymbol{\theta}) X X^{H}\right\} .
\end{aligned}
$$

Low-rank Models (cont.)

Note that

$$
X X^{H}=\left[\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{K}\right]\left[\begin{array}{c}
\boldsymbol{x}_{1}^{H} \\
\boldsymbol{x}_{2}^{H} \\
\vdots \\
\boldsymbol{x}_{K}^{H}
\end{array}\right]=\sum_{k=1}^{K} \boldsymbol{x}_{k} \boldsymbol{x}_{k}^{H}=K \widehat{R}
$$

where

$$
\widehat{R}=\frac{1}{K} \sum_{k=1}^{K} \boldsymbol{x}_{k} \boldsymbol{x}_{k}^{H} \quad \text { sample covariance matrix! }
$$

Therefore, the nonlinear LS objective functions can be rewritten as

$$
\min _{\boldsymbol{\theta}} \operatorname{tr}\left\{P_{A}^{\perp}(\boldsymbol{\theta}) \widehat{R}\right\} \quad \Longleftrightarrow \quad \max _{\boldsymbol{\theta}} \operatorname{tr}\left\{P_{A}(\boldsymbol{\theta}) \widehat{R}\right\}
$$

Low-rank Models (cont.)

Low-rank Models (cont.)

Case 3: A completely unknown.
In this case, a nice result exists, enabling low-rank modeling.
Theorem (Eckart and Young, 1936): Given arbitrary $N \times K(N>K)$ matrix X with the SVD

$$
X=U \Lambda V^{H}
$$

the best LS approximation of this matrix by a low-rank matrix X_{0} ($L=$ $\operatorname{rank}\left\{X_{0}\right\} \leq K$) is given by

$$
\widehat{X}_{0}=U \Lambda_{0} V^{H}
$$

where the matrix Λ_{0} is built from the matrix Λ by replacing the lowest $K-L$ singular values by zeroes.

Low-rank Models (cont.)

Low-rank Modeling of Data Matrix

1. Compute SVD of a given data matrix X,
2. Specify the model order L,
3. From the computed SVD, obtain the low-rank representation using the Eckart and Young's decomposition X_{0}.
