LINEAR ALGEBRA
 Appendix A in Stoica \& Moses
 Ch. 2.3 in Hayes

Here, we follow Ch. 2.3 in Hayes.
2.3.1 Vectors

Let signal be represented by scalar values $x_{1}, x_{2}, \ldots, x_{N}$. Then, the vector notation is

$$
\boldsymbol{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{N}
\end{array}\right]
$$

Vector transpose:

$$
\boldsymbol{x}^{T}=\left[x_{1}, x_{2}, \ldots, x_{N}\right]
$$

Hermitian transpose:

$$
\boldsymbol{x}^{H}=\left(x^{T}\right)^{*}=\left[x_{1}^{*}, x_{2}^{*}, \ldots, x_{N}^{*}\right]
$$

Sometimes, it is convenient to consider sets of vectors, for
example:

$$
\boldsymbol{x}(n)=\left[\begin{array}{c}
x(n) \\
x(n-1) \\
\vdots \\
x(n-N+1)
\end{array}\right]
$$

Note: Stoica and Moses use "*" to denote the Hermitian transpose.

Magnitude of a vector?
Vector Euclidean norm:

$$
\|\boldsymbol{x}\|=\left\{\sum_{i=1}^{N}\left|x_{i}\right|^{2}\right\}^{1 / 2}=\sqrt{\boldsymbol{x}^{H} \boldsymbol{x}}
$$

Scalar (inner) product of two complex vectors $\boldsymbol{a}=$ $\left[a_{1}, \ldots, a_{N}\right]^{T}$ and $\boldsymbol{b}=\left[b_{1}, \ldots, b_{N}\right]^{T}$:

$$
\boldsymbol{a}^{H} \boldsymbol{b}=\sum_{i=1}^{N} a_{i}^{*} b_{i}
$$

Cauchy-Schwartz inequality

$$
\left|\boldsymbol{a}^{H} \boldsymbol{b}\right| \leq\|\boldsymbol{a}\| \cdot\|\boldsymbol{b}\|
$$

where equality holds only iff \boldsymbol{a} and \boldsymbol{b} are colinear (i.e. $\boldsymbol{a}=\alpha \boldsymbol{b}$).

Orthogonal vectors:

$$
\boldsymbol{a}^{H} \boldsymbol{b}=\boldsymbol{b}^{H} \boldsymbol{a}=0
$$

Example: Consider the output of a linear time-invariant (LTI) system (filter):

$$
y(n)=\sum_{k=0}^{N-1} h(k) x(n-k)=\boldsymbol{h}^{T} \boldsymbol{x}(n)
$$

where

$$
\boldsymbol{h}=\left[\begin{array}{c}
h(0) \\
h(1) \\
\vdots \\
h(N-1)
\end{array}\right], \quad \boldsymbol{x}(n)=\left[\begin{array}{c}
x(n) \\
x(n-1) \\
\vdots \\
x(n-N+1)
\end{array}\right]
$$

2.3.2 Linear Independence, Vector Spaces, and Basis Vectors

A set of vectors $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{n}$ is said to be linearly independent if

$$
\begin{equation*}
\alpha_{1} \boldsymbol{x}_{1}+\alpha_{2} \boldsymbol{x}_{2}+\cdots \alpha_{n} \boldsymbol{x}_{n}=0 \tag{1}
\end{equation*}
$$

implies that $\alpha_{i}=0$ for all i. If a set of nonzero α_{i} can be found so that (1) holds, the vectors are linearly dependent. For
example, for nonzero α_{1},

$$
\boldsymbol{x}_{1}=\beta_{2} \boldsymbol{x}_{2}+\cdots \beta_{n} \boldsymbol{x}_{n}
$$

Example 2.3.2:

$$
\begin{gathered}
\boldsymbol{x}_{1}=\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right], \quad \boldsymbol{x}_{2}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right] \quad \text { linearly independent } \\
\boldsymbol{x}_{1}=\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right], \boldsymbol{x}_{2}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right], \boldsymbol{x}_{3}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] \text { linearly dependent }
\end{gathered}
$$

because $\boldsymbol{x}_{1}=\boldsymbol{x}_{2}+2 \boldsymbol{x}_{3}$.
Given N vectors $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{N}$, consider the set of all vectors \mathcal{V} that may be formed as a linear combination of the vectors \boldsymbol{v}_{i} :

$$
\boldsymbol{v}=\sum_{i=1}^{N} \alpha_{i} \boldsymbol{v}_{i}
$$

This set forms a vector space and the vectors \boldsymbol{v}_{i} are said to span the space \mathcal{V}.

If \boldsymbol{v}_{i} 's are linearly independent, they are said to form a basis for the space \mathcal{V} and the number of basis vectors N is referred to as the space dimension. The basis for a vector space is not unique!

2.3.3 Matrices

$n \times m$ matrix:

$$
A=\left\{a_{i j}\right\}=\left[\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \cdots & a_{1 m} \\
a_{21} & a_{22} & a_{23} & \cdots & a_{2 m} \\
a_{31} & a_{32} & a_{33} & \cdots & a_{3 m} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
a_{n 1} & a_{n 2} & a_{n 3} & \cdots & a_{n m}
\end{array}\right]
$$

If $n=m$, then A is a square matrix. Symmetric matrix:

$$
A^{T}=A .
$$

Hermitian matrix:

$$
A^{H}=A .
$$

Some properties [apply to transpose ${ }^{T}$ as well]:

$$
(A+B)^{H}=A^{H}+B^{H}, \quad\left(A^{H}\right)^{H}=A, \quad(A B)^{H}=B^{H} A^{H} .
$$

Column and row representations of an $n \times m$ matrix:

$$
A=\left[\boldsymbol{c}_{1}, \boldsymbol{c}_{2}, \cdots, \boldsymbol{c}_{m}\right]=\left[\begin{array}{c}
\boldsymbol{r}_{1}^{H} \tag{2}\\
\boldsymbol{r}_{2}^{H} \\
\vdots \\
\boldsymbol{r}_{n}^{H}
\end{array}\right]
$$

2.3.4 Matrix Inverse

Rank Discussion: The rank of $A \equiv$ \# of linearly independent columns in $(2) \equiv \#$ of linearly independent row vectors in (2) [i.e. \# of linearly independent vectors in $\left\{\boldsymbol{r}_{1}, \boldsymbol{r}_{2}, \ldots, \boldsymbol{r}_{n}\right\}$]. Important property:

$$
\operatorname{rank}(A)=\operatorname{rank}\left(A A^{H}\right)=\operatorname{rank}\left(A^{H} A\right) .
$$

For any $n \times m$ matrix $A: \operatorname{rank}(A) \leq \min \{n, m\}$.
If $\operatorname{rank}(A)=\min \{n, m\}, A$ is said to be of full rank.
If A is a square matrix of full rank, then there exists a unique matrix A^{-1}, called the inverse of A :

$$
A^{-1} A=A A^{-1}=I
$$

where

$$
I=\left[\begin{array}{ccccc}
1 & 0 & 0 & \cdots & 0 \\
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 1
\end{array}\right],
$$

is called the identity matrix.
If a square matrix A (of size $n \times n$) is not of full rank [i.e. $\operatorname{rank}(A)<n$], then it is said to be singular.

Properties: $(A B)^{-1}=B^{-1} A^{-1},\left(A^{H}\right)^{-1}=\left(A^{-1}\right)^{H}$.

Useful Matrix Inversion Identities

Matrix Inversion Lemma:

$$
(A+B C D)^{-1}=A^{-1}-A^{-1} B\left(C^{-1}+D A^{-1} B\right)^{-1} D A^{-1}
$$

for arbitrary square nonsingular A and C. In the special case where C is a scalar, $B=\boldsymbol{b}$ is a column vector and $D=\boldsymbol{d}^{H}$ is a row vector. For $C=1$, we obtain the Woodbury identity:

$$
\left(A+\boldsymbol{b} \boldsymbol{d}^{H}\right)^{-1}=A^{-1}-\frac{A^{-1} \boldsymbol{b} \boldsymbol{d}^{H} A^{-1}}{1+\boldsymbol{d}^{H} A^{-1} \boldsymbol{b}}
$$

2.3.5 The Determinant and the Trace

The determinant of an $n \times n$ matrix (for any i):

$$
\operatorname{det}(A)=\sum_{j=1}^{n}(-1)^{i+j} a_{i j} \operatorname{det}\left(A_{i j}\right)
$$

where $A_{i j}$ is the $(n-1) \times(n-1)$ matrix formed by deleting the i th row and the j th column of A.

Example:

$$
\begin{gathered}
A=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] \\
\operatorname{det}(A)=a_{11} \operatorname{det}\left[\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right]-a_{12} \operatorname{det}\left[\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right] \\
+a_{13} \operatorname{det}\left[\begin{array}{cc}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right] .
\end{gathered}
$$

Property: an $n \times n$ matrix A is invertible (nonsingular) iff its determinant is nonzero,

$$
\operatorname{det}(A) \neq 0
$$

Properties of the determinant (for $n \times n$ matrix A):

$$
\begin{aligned}
\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B), & \operatorname{det}(\alpha A)=\alpha^{n} \operatorname{det} A \\
\operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det} A}, & \operatorname{det}\left(A^{T}\right)=\operatorname{det} A .
\end{aligned}
$$

Another important function of a matrix is trace:

$$
\operatorname{tr}(A)=\sum_{i=1}^{n} a_{i i} .
$$

2.3.6 Linear Equations

Many practical DSP problems [e.g. signal modeling, Wiener filtering, etc.] require solving a set of linear equations:

$$
\begin{aligned}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 m} x_{m}= & b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 m} x_{m}= & b_{2} \\
& \vdots \\
a_{n 1} x_{1}+a_{n 2} x_{2}+\cdots+a_{n m} x_{m}= & b_{n}
\end{aligned}
$$

In matrix notation:

$$
\begin{equation*}
A \boldsymbol{x}=\boldsymbol{b}, \tag{3}
\end{equation*}
$$

where

- A is an $n \times m$ matrix with entries $a_{i j}$,
- \boldsymbol{x} is an m-dimensional vector of x_{i} 's, and
- \boldsymbol{b} is an n-dimensional vector of b_{i} 's.

For $A=\left[\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \cdots, \boldsymbol{a}_{m}\right]$, we can view (3) as an expansion of b :

$$
\boldsymbol{b}=\sum_{i=1}^{m} x_{i} \boldsymbol{a}_{i} .
$$

Square matrix $A: m=n$. The nature of the solution depends upon whether or not A is singular.

Nonsingular case:

$$
\boldsymbol{x}=A^{-1} \boldsymbol{b} .
$$

Singular case: no solution or many solutions.

Example:

$$
\begin{aligned}
& x_{1}+x_{2}=1 \\
& x_{1}+x_{2}=2, \quad \text { no solution. }
\end{aligned}
$$

$x_{1}+x_{2}=1$
$x_{1}+x_{2}=1, \quad$ many solutions.

Rectangular matrix $A: m<n$. More equations than unknowns and, in general, no solution exists. The system is called overdetermined.

When A is a full-rank matrix and, therefore, $A^{H} A$ is nonsingular, a common approach is to find the least-squares solution, i.e. the vector x that minimizes the Euclidean norm of the error vector:

$$
\|e\|^{2}=\|\boldsymbol{b}-A \boldsymbol{x}\|^{2}
$$

$$
\begin{aligned}
= & (\boldsymbol{b}-A \boldsymbol{x})^{H}(\boldsymbol{b}-A \boldsymbol{x}) \\
= & \boldsymbol{b}^{H} \boldsymbol{b}-\boldsymbol{x}^{H} A^{H} \boldsymbol{b}-\boldsymbol{b}^{H} A \boldsymbol{x}+\boldsymbol{x}^{H} A^{H} A \boldsymbol{x} \\
= & {\left[\boldsymbol{x}-\left(A^{H} A\right)^{-1} A^{H} \boldsymbol{b}\right]^{H} A^{H} A\left[\boldsymbol{x}-\left(A^{H} A\right)^{-1} A^{H} \boldsymbol{b}\right] } \\
& +\left[\boldsymbol{b}^{H} \boldsymbol{b}-\boldsymbol{b}^{H} A\left(A^{H} A\right)^{-1} A^{H} \boldsymbol{b}\right] .
\end{aligned}
$$

The second term is independent of \boldsymbol{x}. Therefore, the LS solution is

$$
\boldsymbol{x}_{\mathrm{LS}}=\left(A^{H} A\right)^{-1} A^{H} \boldsymbol{b} .
$$

$\underline{\underline{b}}=\underline{a} \cdot x+\underline{e}$

The best (LS) approximation $\widehat{\boldsymbol{b}}$ to \boldsymbol{b} is given by

$$
\widehat{\boldsymbol{b}}=A \boldsymbol{x}_{\mathrm{LS}}=A\left(A^{H} A\right)^{-1} A^{H} \boldsymbol{b}=P_{A} \boldsymbol{b}
$$

where

$$
P_{A}=A\left(A^{H} A\right)^{-1} A^{H}
$$

is called the projection matrix with properties:

$$
P_{A} \boldsymbol{a}=\boldsymbol{a}
$$

if the vector \boldsymbol{a} belongs to the column space of A, and

$$
P_{A} \boldsymbol{a}=\mathbf{0}
$$

if \boldsymbol{a} is orthogonal to column space of A.
The minimum LS error:

$$
\begin{aligned}
\min \|\boldsymbol{e}\|^{2} & =\left\|\boldsymbol{b}-A \boldsymbol{x}_{\mathrm{LS}}\right\|^{2} \\
& =\left\|\left(I-A\left(A^{H} A\right)^{-1} A^{H}\right) \boldsymbol{b}\right\|^{2} \\
& =\left\|\left(I-P_{A}\right) \boldsymbol{b}\right\|^{2}=\left\|P_{A}^{\perp} \boldsymbol{b}\right\|^{2}=\boldsymbol{b}^{H} P_{A}^{\perp} \boldsymbol{b}
\end{aligned}
$$

where $P_{A}^{\perp}=I-P_{A}$ is the projection matrix onto the subspace orthogonal to the column space of A.

Alternatively, the LS solution is found from the normal equations:

$$
A^{H} A \boldsymbol{x}=A^{H} \boldsymbol{b}
$$

which follow from the orthogonality principle:

$$
A^{H} \boldsymbol{e}=\mathbf{0}
$$

Illustration of LS Solutions

Consider

$$
\begin{aligned}
A & =\left[\boldsymbol{a}_{1}, \boldsymbol{a}_{2}\right], \\
\boldsymbol{x}_{\mathrm{LS}} & =\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] .
\end{aligned}
$$

$\mathrm{X}_{2} \mathrm{a}_{2}$

2.3.6 Linear Equations

Rectangular matrix $A: n<m$. Fewer equations than unknowns and, provided the equations are consistent, there are many solutions. The system is called underdetermined.

2.3.7 Special Matrix Forms

Diagonal (square) matrix:

$$
A=\operatorname{diag}\left\{a_{11}, a_{22}, \ldots, a_{n n}\right\}=\left[\begin{array}{ccccc}
a_{11} & 0 & 0 & \cdots & 0 \\
0 & a_{22} & 0 & \cdots & 0 \\
0 & 0 & a_{33} & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & a_{n n}
\end{array}\right]
$$

Exchange matrix:

$$
J=\left[\begin{array}{ccccc}
0 & \cdots & 0 & 0 & 1 \\
0 & \cdots & 0 & 1 & 0 \\
0 & \cdots & 1 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
1 & 0 & 0 & \cdots & 0
\end{array}\right]
$$

Toeplitz matrix:

$$
a_{i k}=a_{i+1, k+1} \quad \text { for all } i, k<n .
$$

Example:

$$
A=\left[\begin{array}{llll}
1 & 3 & 2 & 4 \\
2 & 1 & 3 & 2 \\
7 & 2 & 1 & 3 \\
1 & 7 & 2 & 1
\end{array}\right]
$$

2.3.8 Quadratic and Hermitian Forms

Quadratic form of a real symmetric square matrix A :

$$
Q(\boldsymbol{x})=\boldsymbol{x}^{T} A \boldsymbol{x}
$$

Similarly, Hermitiam form of a Hermitian square matrix A :

$$
Q(\boldsymbol{x})=\boldsymbol{x}^{H} A \boldsymbol{x}
$$

Symmetric (Hermitian) matrices are positive semidefinite if $Q(\boldsymbol{x}) \geq 0$ for all nonzero \boldsymbol{x}. If $Q(\boldsymbol{x})>0$ for all nonzero \boldsymbol{x}, then A is said to be positive definite.

Example: Matrix $A=\boldsymbol{y} \boldsymbol{y}^{H}$ is positive semidefinite, where \boldsymbol{y} is an arbitrary complex vector:

$$
Q(\boldsymbol{x})=\boldsymbol{x}^{H} \boldsymbol{y} \boldsymbol{y}^{H} \boldsymbol{x}=\left\|\boldsymbol{x}^{H} \boldsymbol{y}\right\|^{2} \geq 0
$$

2.3.9 Eigenvalues and Eigenvectors

Consider the characteristic equation of an $n \times n$ matrix A :

$$
A \boldsymbol{u}=\lambda \boldsymbol{u}
$$

which is equivalent to the following set of homogeneous linear equations:

$$
(A-\lambda I) \boldsymbol{u}=\mathbf{0}
$$

For a nontrivial solution, $A-\lambda I$ needs to be singular. Hence,

$$
p(\lambda)=\operatorname{det}(A-\lambda I)=0
$$

$p(\lambda)$ is called the characteristic polynomial of A, and the n roots, $\lambda_{i}, i=1, \ldots, n$, \equiv the eigenvalues of A.

For each eigenvalue λ_{i}, the matrix $A-\lambda_{i} I$ is singular, and there will be at least one nonzero eigenvector that solves the equation

$$
A \boldsymbol{u}_{i}=\lambda_{i} \boldsymbol{u}_{i}
$$

Since, for any eigenvector $\boldsymbol{u}_{i}, \alpha \boldsymbol{u}_{i}$ will also be an eigenvector, eigenvectors are often normalized:

$$
\left\|\boldsymbol{u}_{i}\right\|=1, \quad i=1,2, \ldots, n
$$

Property 1: The eigenvectors $\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{n}$ corresponding to distinct eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ are linearly independent.

Property 2: If $\operatorname{rank}(A)=m$, then there will be $n-m$ independent solutions to the homogeneous equation $A \boldsymbol{u}_{i}=\mathbf{0}$. These solutions form the (so-called) null space of A.

Property 3: The eigenvalues of a Hermitian matrix are real.
Proof. From the characteristic equation $A \boldsymbol{u}_{i}=\lambda_{i} \boldsymbol{u}_{i}$, we have:

$$
\boldsymbol{u}_{i}^{H} A \boldsymbol{u}_{i}=\lambda_{i} \boldsymbol{u}_{i}^{H} \boldsymbol{u}_{i} .
$$

Applyng ${ }^{H}$ to the above equation, we get

$$
\boldsymbol{u}_{i}^{H} A^{H} \boldsymbol{u}_{i}=\lambda_{i}^{*} \boldsymbol{u}_{i}^{H} \boldsymbol{u}_{i} .
$$

Since A is Hermitian $\left(A=A^{H}\right)$, we have

$$
\lambda_{i}^{*} \boldsymbol{u}_{i}^{H} \boldsymbol{u}_{i}=\boldsymbol{u}_{i}^{H} A^{H} \boldsymbol{u}_{i} \overbrace{\approx}^{A} \boldsymbol{A}^{H} \boldsymbol{u}_{i}^{H} A \boldsymbol{u}_{i}=\lambda_{i} \boldsymbol{u}_{i}^{H} \boldsymbol{u}_{i} .
$$

Thus, $\lambda_{i}=\lambda_{i}^{*}$, i.e. λ_{i} must be real. \square
Property 4: A Hermitian matrix is positive definite $(A>0)$ iff the eigenvalues of A are positive.

Similar property holds for negative definite and positive (negative) semi-definite matrices.

A useful relationship between matrix determinant and eigenvalues:

$$
\operatorname{det}\{A\}=\prod_{i=1}^{n} \lambda_{i}
$$

Therefore, a matrix is nonsingular (invertible) iff all of its eigenvalues are nonzero.

Property 5: The eigenvectors of a Hermitian matrix corresponding to distinct eigenvalues are othogonal, i.e. if $\lambda_{i} \neq \lambda_{k}$, then $\boldsymbol{u}_{i}^{H} \boldsymbol{u}_{k}=0$.

Proof. Let λ_{i} and λ_{k} be two distinct eigenvalues of A. Then

$$
A \boldsymbol{u}_{i}=\lambda_{i} \boldsymbol{u}_{i}, \quad A \boldsymbol{u}_{k}=\lambda_{k} \boldsymbol{u}_{k} .
$$

Multiplying the above equations by \boldsymbol{u}_{k}^{H} and \boldsymbol{u}_{i}^{H}, respectively, we get

$$
\boldsymbol{u}_{k}^{H} A \boldsymbol{u}_{i}=\lambda_{i} \boldsymbol{u}_{k}^{H} \boldsymbol{u}_{i}, \quad \boldsymbol{u}_{i}^{H} A \boldsymbol{u}_{k}=\lambda_{k} \boldsymbol{u}_{i}^{H} \boldsymbol{u}_{k} .
$$

Taking the Hermitian transpose of the second equation and using the fact that A is Hermitian (i.e. $A^{H}=A$ and $\lambda_{k}^{*}=\lambda_{k}$), yields

$$
\boldsymbol{u}_{k}^{H} A \boldsymbol{u}_{i}=\lambda_{k} \boldsymbol{u}_{k}^{H} \boldsymbol{u}_{i},
$$

leading to

$$
0=\left(\lambda_{i}-\lambda_{k}\right) \boldsymbol{u}_{k}^{H} \boldsymbol{u}_{i} .
$$

Since $\lambda_{i} \neq \lambda_{k}$, we have

$$
\boldsymbol{u}_{k}^{H} \boldsymbol{u}_{i}=0
$$

Remark: Although verified above only for the case of distinct eigenvalues, it is also true that, for any $n \times n$ Hermitian matrix, there exists a set of n orthonormal eigenvectors.

For any $n \times n$ matrix A having a set of linearly independent eigenvectors, we may perform an eigenvalue decomposition (END):

$$
A=U \Lambda U^{-1}
$$

by rewriting the set of equations

$$
A \boldsymbol{u}_{i}=\lambda_{i} \boldsymbol{u}_{i}, \quad i=1,2, \ldots, n
$$

in the form

$$
A\left[\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \cdots, \boldsymbol{u}_{n}\right]=\left[\lambda_{1} \boldsymbol{u}_{1}, \lambda_{2} \boldsymbol{u}_{2}, \cdots, \lambda_{n} \boldsymbol{u}_{n}\right]
$$

or, equivalently

$$
\begin{equation*}
A U=U \Lambda \tag{4}
\end{equation*}
$$

where

$$
\begin{aligned}
U & =\left[\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \cdots, \boldsymbol{u}_{n}\right] \\
\Lambda & =\operatorname{diag}\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right\}
\end{aligned}
$$

Since we have assumed that U is nonsingular, we can rightmultiply the equation (4) by U^{-1}.

2.3.9 Eigenvalues and Eigenvectors (Hermitian matrix)

For a Hermitian matrix, we can always find an orthonormal set of eigenvectors:

$$
U^{H} U=I
$$

Hence, U is unitary (i.e. $U^{H}=U^{-1}$), and the EVD becomes

$$
A=U \Lambda U^{H}
$$

or, equivalently,

$$
A=\sum_{i=1}^{n} \lambda_{i} \boldsymbol{u}_{i} \boldsymbol{u}_{i}^{H}
$$

This result is known as the spectral theorem.
Using the unitary property of U, it is easy to find the inverse of a nonsigular Hermitian matrix via EVD:

$$
A^{-1}=\left(U \Lambda U^{H}\right)^{-1}=\left(U^{H}\right)^{-1} \Lambda^{-1} U^{-1}=U \Lambda^{-1} U^{H}
$$

or, equivalently,

$$
A^{-1}=\sum_{i=1}^{n} \frac{1}{\lambda_{i}} \boldsymbol{u}_{i} \boldsymbol{u}_{i}^{H}
$$

Hence, the inverse does not affect eigenvectors, but transforms eigenvalues λ_{i} to $1 / \lambda_{i}$.

In many DSP applications, matrices may be very close to singular (ill-conditioned - one or more eigenvalues are close to zero), and, therefore, their inverse may be unstable. We may stabilize the problem by adding a constant to each term along the diagonal (so-called diagonal loading):

$$
A=B+\alpha I
$$

This operation leaves eigenvectors unchanged, but changes eigenvalues:

$$
A \boldsymbol{u}_{i}=B \boldsymbol{u}_{i}+\alpha \boldsymbol{u}_{i}=\left(\lambda_{i}+\alpha\right) \boldsymbol{u}_{i}
$$

where λ_{i} and \boldsymbol{u}_{i} are the eigenvalues and eigenvectors of B :

$$
B \boldsymbol{u}_{i}=\lambda_{i} \boldsymbol{u}_{i}
$$

2.3.9 Eigenvalues and Eigenvectors - Trace

We can write the trace of A in terms of its eigenvalues:

$$
\operatorname{tr}(A)=\sum_{i=1}^{n} \lambda_{i} .
$$

Similarly,

$$
\operatorname{tr}\left(A^{-1}\right)=\sum_{i=1}^{n} \frac{1}{\lambda_{i}} .
$$

This property can be easily shown using the EVD and $\operatorname{tr}(A B)=$ $\operatorname{tr}(B A)$.

Denoting the maximum eigenvalue of A by λ_{MAX}, if A is positive semi-definite Hermitian, then

$$
\lambda_{\mathrm{MAX}} \leq \sum_{i=1}^{n} \lambda_{i}=\operatorname{tr}(A)
$$

Singular Value Decomposition (SVD)

For a rectangular $n \times m$ matrix A, we may perform the SVD instead of EVD:

$$
A=U \Lambda V^{H}
$$

where $U U^{H}=U^{H} U=I$ and $V V^{H}=V^{H} V=I$ and

$$
\begin{aligned}
\Lambda & =\left\{\begin{array}{cl}
{[\Lambda(n), 0],} & n<m \\
{\left[\begin{array}{c}
\Lambda(m) \\
0
\end{array}\right],} & n>m
\end{array}\right. \\
\Lambda(m) & =\operatorname{diag}\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}\right\}
\end{aligned}
$$

and λ_{i} 's are non-negative. Equivalently,

$$
A=\sum_{i=1}^{n} \lambda_{i} \boldsymbol{u}_{i} \boldsymbol{v}_{i}^{H} \quad \text { if } n<m
$$

or

$$
A=\sum_{i=1}^{m} \lambda_{i} \boldsymbol{u}_{i} \boldsymbol{v}_{i}^{H} \quad \text { if } n>m
$$

where \boldsymbol{u}_{i} and \boldsymbol{v}_{i} are the $n \times 1$ and $m \times 1$ left and right singular vectors, respectively, and λ_{i} 's are singular values.

Pictorial representation of the SVD:

Computational Aspects of LS

Solving Normal Equations:

$$
A^{H} A \boldsymbol{x}_{\mathrm{LS}}=A^{H} \boldsymbol{b} .
$$

Define

$$
C=A^{H} A, \quad \boldsymbol{g}=A^{H} \boldsymbol{b} .
$$

Solve

$$
C \boldsymbol{x}_{\mathrm{LS}}=\boldsymbol{g},
$$

where C is a positive definite Hermitian matrix.

Cholesky Decomposition

Also known as the $L D L^{H}$ decomposition:

$$
C=L D L^{H}
$$

where

$$
L=\left[\begin{array}{ccccc}
1 & 0 & 0 & \cdots & 0 \\
l_{21} & 1 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
l_{n 1} & l_{n 2} & l_{n 3} & \cdots & 1
\end{array}\right]
$$

(lower triangular matrix)
and $D=\operatorname{diag}\left\{d_{1}, d_{2}, \ldots, d_{n}\right\}, d_{i}>0$.
Back-substitution to solve:

$$
L D L^{H} \boldsymbol{x}_{\mathrm{LS}}=\boldsymbol{g}
$$

Cholesky Decomposition Approach to Solving LS: Define $\boldsymbol{y}=D L^{H} \boldsymbol{x}_{\mathrm{LS}}$. Then

$$
\left[\begin{array}{ccccc}
1 & 0 & 0 & \cdots & 0 \\
l_{21} & 1 & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
l_{n 1} & l_{n 2} & l_{n 3} & \cdots & 1
\end{array}\right]\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right]=\left[\begin{array}{c}
g_{1} \\
g_{2} \\
\vdots \\
g_{n}
\end{array}\right]
$$

$$
\begin{aligned}
y_{1} & =g_{1} \\
y_{2} & =g_{2}-l_{21} y_{1} \\
y_{k} & =g_{k}-\sum_{i=1}^{k-1} l_{k i} y_{i}, \quad k=1,2, \ldots, n .
\end{aligned}
$$

$$
\left[\begin{array}{cccc}
1 & l_{21}^{*} & \cdots & l_{n 1}^{*} \\
0 & 1 & \cdots & l_{n 2}^{*} \\
\vdots & \vdots & \vdots & \vdots \\
0 & 0 & \cdots & 1
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=L^{H} \boldsymbol{x}_{\mathrm{LS}}=D^{-1} \boldsymbol{y}=\left[\begin{array}{c}
\frac{y_{1}}{d_{1}} \\
\vdots \\
\frac{y_{n}}{d_{n}}
\end{array}\right]
$$

$$
\begin{aligned}
x_{n} & =\frac{y_{n}}{d_{n}} \\
x_{k} & =\frac{y_{k}}{d_{k}}-\sum_{i=k+1}^{n} l_{i k}^{*} x_{i}, \quad k=n-1, \ldots
\end{aligned}
$$

Note: Solving normal equations using this approach may be sensitive to numerical errors.

QR Decomposition Approach to Solving LS

A can be factored as

$$
A=Q R=\left[\begin{array}{ll}
Q_{1} & Q_{2}
\end{array}\right]\left[\begin{array}{c}
R_{1} \\
0
\end{array}\right]=Q_{1} R_{1}
$$

where Q is unitary (i.e. $Q Q^{H}=Q^{H} Q$) and R_{1} is square upper triangular (Matlab: qr). Then

$$
\left(A^{H} A\right)^{-1} A^{H}=R_{1}^{-1} Q_{1}^{H}
$$

and $\boldsymbol{x}_{\mathrm{LS}}$ is obtained by solving the following triangular system:

$$
R_{1} \boldsymbol{x}_{\mathrm{LS}}=Q_{1}^{H} \boldsymbol{b}
$$

Note: Numerically more robust than Cholesky. For a large number of overdetermined equations, the QR method needs about $2 \times$ more computations compared with Cholesky.

