
LINEAR ALGEBRA
Appendix A in Stoica & Moses

Ch. 2.3 in Hayes

Here, we follow Ch. 2.3 in Hayes.

2.3.1 Vectors

Let signal be represented by scalar values x1, x2, . . . , xN . Then,
the vector notation is

x =


x1

x2
...

xN

 .

Vector transpose:

xT = [x1, x2, . . . , xN ].

Hermitian transpose:

xH = (xT )∗ = [x∗1, x
∗
2, . . . , x

∗
N ].

Sometimes, it is convenient to consider sets of vectors, for
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example:

x(n) =


x(n)

x(n− 1)
...

x(n−N + 1)

 .

Note: Stoica and Moses use “∗” to denote the Hermitian
transpose.

Magnitude of a vector?

Vector Euclidean norm:

‖x‖ =

{
N∑

i=1

|xi|2
}1/2

=
√

xHx

Scalar (inner) product of two complex vectors a =
[a1, . . . , aN ]T and b = [b1, . . . , bN ]T :

aHb =
N∑

i=1

a∗i bi.

Cauchy-Schwartz inequality

|aHb| ≤ ‖a‖ · ‖b‖,

where equality holds only iff a and b are colinear (i.e. a = αb).
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Orthogonal vectors:

aHb = bHa = 0.

Example: Consider the output of a linear time-invariant (LTI)
system (filter):

y(n) =
N−1∑
k=0

h(k)x(n− k) = hTx(n)

where

h =


h(0)
h(1)

...
h(N − 1)

 , x(n) =


x(n)

x(n− 1)
...

x(n−N + 1)

 .

2.3.2 Linear Independence, Vector Spaces, and Basis
Vectors

A set of vectors x1,x2, . . . ,xn is said to be linearly independent
if

α1x1 + α2x2 + · · ·αnxn = 0 (1)

implies that αi = 0 for all i. If a set of nonzero αi can be
found so that (1) holds, the vectors are linearly dependent. For
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example, for nonzero α1,

x1 = β2x2 + · · ·βnxn.

Example 2.3.2:

x1 =

 1
2
1

 , x2 =

 1
0
1

 linearly independent

x1 =

 1
2
1

, x2 =

 1
0
1

, x3 =

 0
1
0

 linearly dependent

because x1 = x2 + 2x3.

Given N vectors v1,v2, . . . ,vN , consider the set of all vectors
V that may be formed as a linear combination of the vectors
vi:

v =
N∑

i=1

αivi.

This set forms a vector space and the vectors vi are said to
span the space V.

If vi’s are linearly independent, they are said to form a basis
for the space V and the number of basis vectors N is referred
to as the space dimension. The basis for a vector space is not
unique!
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2.3.3 Matrices

n×m matrix:

A = {aij} =


a11 a12 a13 · · · a1m

a21 a22 a23 · · · a2m

a31 a32 a33 · · · a3m
... ... ... ... ...

an1 an2 an3 · · · anm

 ,

If n = m, then A is a square matrix. Symmetric matrix:

AT = A.

Hermitian matrix:
AH = A.

Some properties [apply to transpose T as well]:

(A + B)H = AH + BH, (AH)H = A, (AB)H = BHAH.

Column and row representations of an n×m matrix:

A = [c1, c2, · · · , cm] =


rH

1

rH
2
...

rH
n

 (2)
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2.3.4 Matrix Inverse

Rank Discussion: The rank of A ≡ # of linearly independent
columns in (2) ≡ # of linearly independent row vectors in
(2) [i.e. # of linearly independent vectors in {r1, r2, . . . , rn}].
Important property:

rank(A) = rank(AAH) = rank(AHA).

For any n×m matrix A: rank(A) ≤ min{n, m}.

If rank(A) = min{n, m}, A is said to be of full rank.

If A is a square matrix of full rank, then there exists a unique
matrix A−1, called the inverse of A:

A−1A = AA−1 = I

where

I =


1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
... ... ... ... ...
0 0 0 · · · 1

 ,

is called the identity matrix.

If a square matrix A (of size n × n) is not of full rank [i.e.
rank(A) < n], then it is said to be singular.

Properties: (AB)−1 = B−1A−1, (AH)−1 = (A−1)H.
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Useful Matrix Inversion Identities

Matrix Inversion Lemma:

(A + BCD)−1 = A−1 −A−1B(C−1 + DA−1B)−1DA−1

for arbitrary square nonsingular A and C. In the special case
where C is a scalar, B = b is a column vector and D = dH is
a row vector. For C = 1, we obtain the Woodbury identity:

(A + bdH)−1 = A−1 − A−1bdHA−1

1 + dHA−1b
.
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2.3.5 The Determinant and the Trace

The determinant of an n× n matrix (for any i):

det(A) =
n∑

j=1

(−1)i+jaijdet(Aij)

where Aij is the (n − 1) × (n − 1) matrix formed by deleting
the ith row and the jth column of A.

Example:

A =

 a11 a12 a13

a21 a22 a23

a31 a32 a33

 ,

det(A) = a11 det
[

a22 a23

a32 a33

]
− a12 det

[
a21 a23

a31 a33

]
+a13 det

[
a21 a22

a31 a32

]
.

Property: an n× n matrix A is invertible (nonsingular) iff its
determinant is nonzero,

det(A) 6= 0.
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Properties of the determinant (for n× n matrix A):

det(AB) = det(A) det(B), det(αA) = αn detA

det(A−1) =
1

detA
, det(AT ) = det A.

Another important function of a matrix is trace:

tr(A) =
n∑

i=1

aii.
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2.3.6 Linear Equations

Many practical DSP problems [e.g. signal modeling, Wiener
filtering, etc.] require solving a set of linear equations:

a11x1 + a12x2 + · · ·+ a1mxm = b1

a21x1 + a22x2 + · · ·+ a2mxm = b2

...

an1x1 + an2x2 + · · ·+ anmxm = bn

In matrix notation:
Ax = b, (3)

where

• A is an n×m matrix with entries aij,

• x is an m-dimensional vector of xi’s, and

• b is an n-dimensional vector of bi’s.

For A = [a1,a2, · · · ,am], we can view (3) as an expansion of
b:

b =
m∑

i=1

xiai.
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Square matrix A : m = n. The nature of the solution depends
upon whether or not A is singular.

Nonsingular case:
x = A−1b.

Singular case: no solution or many solutions.

Example:

x1 + x2 = 1

x1 + x2 = 2, no solution.

x1 + x2 = 1

x1 + x2 = 1, many solutions.
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Rectangular matrix A : m < n. More equations than
unknowns and, in general, no solution exists. The system
is called overdetermined.

When A is a full-rank matrix and, therefore, AHA is
nonsingular, a common approach is to find the least-squares
solution, i.e. the vector x that minimizes the Euclidean norm
of the error vector:

‖e‖2 = ‖b−Ax‖2
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= (b−Ax)H(b−Ax)

= bHb− xHAHb− bHAx + xHAHAx

=
[
x− (AHA)−1AHb

]H
AHA

[
x− (AHA)−1AHb

]
+[bHb− bHA(AHA)−1AHb].

The second term is independent of x. Therefore, the LS
solution is

xLS = (AHA)−1AHb.
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The best (LS) approximation b̂ to b is given by

b̂ = AxLS = A(AHA)−1AH b = PA b,

where
PA = A(AHA)−1AH

is called the projection matrix with properties:

PAa = a

if the vector a belongs to the column space of A, and

PAa = 0

if a is orthogonal to the column space of A.

The minimum LS error:

min ‖e‖2 = ‖b−AxLS‖2

= ‖(I −A(AHA)−1AH)b‖2

= ‖(I − PA) b‖2 = ‖P⊥
A b‖2 = bHP⊥

A b,

where P⊥
A = I −PA is the projection matrix onto the subspace

orthogonal to the column space of A.
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Alternatively, the LS solution is found from the normal
equations:

AHAx = AHb.

which follow from the orthogonality principle:

AHe = 0.
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Illustration of LS Solutions

Consider

A = [a1,a2],

xLS =
[

x1

x2

]
.
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2.3.6 Linear Equations

Rectangular matrix A : n < m. Fewer equations than
unknowns and, provided the equations are consistent, there are
many solutions. The system is called underdetermined.
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2.3.7 Special Matrix Forms

Diagonal (square) matrix:

A=diag {a11, a22, . . . , ann}=


a11 0 0 · · · 0
0 a22 0 · · · 0
0 0 a33 · · · 0
... ... ... ... ...
0 0 0 · · · ann

 .

Exchange matrix:

J =


0 · · · 0 0 1
0 · · · 0 1 0
0 · · · 1 0 0
... ... ... ... ...
1 0 0 · · · 0

 .

Toeplitz matrix:

aik = ai+1,k+1 for all i, k < n.

Example:

A =


1 3 2 4
2 1 3 2
7 2 1 3
1 7 2 1

 .
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2.3.8 Quadratic and Hermitian Forms

Quadratic form of a real symmetric square matrix A:

Q(x) = xTAx.

Similarly, Hermitiam form of a Hermitian square matrix A:

Q(x) = xHAx.

Symmetric (Hermitian) matrices are positive semidefinite if
Q(x) ≥ 0 for all nonzero x. If Q(x) > 0 for all nonzero x,
then A is said to be positive definite.

Example: Matrix A = yyH is positive semidefinite, where y
is an arbitrary complex vector:

Q(x) = xHyyHx = ‖xHy‖2 ≥ 0.
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2.3.9 Eigenvalues and Eigenvectors

Consider the characteristic equation of an n× n matrix A:

Au = λu,

which is equivalent to the following set of homogeneous linear
equations:

(A− λI)u = 0.

For a nontrivial solution, A− λI needs to be singular. Hence,

p(λ) = det(A− λI) = 0.

p(λ) is called the characteristic polynomial of A, and the n
roots, λi, i = 1, . . . , n,≡ the eigenvalues of A.

For each eigenvalue λi, the matrix A − λiI is singular, and
there will be at least one nonzero eigenvector that solves the
equation

Aui = λiui.

Since, for any eigenvector ui, αui will also be an eigenvector,
eigenvectors are often normalized:

‖ui‖ = 1, i = 1, 2, . . . , n.

Property 1: The eigenvectors u1,u2, . . . ,un corresponding to
distinct eigenvalues λ1, λ2, . . . , λn are linearly independent.
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Property 2: If rank(A) = m, then there will be n − m
independent solutions to the homogeneous equation Aui = 0.
These solutions form the (so-called) null space of A.

Property 3: The eigenvalues of a Hermitian matrix are real.

Proof. From the characteristic equation Aui = λiui, we have:

uH
i Aui = λiu

H
i ui.

Applyng H to the above equation, we get

uH
i AHui = λ∗i u

H
i ui.

Since A is Hermitian (A = AH), we have

λ∗i u
H
i ui = uH

i AHui

A = AH︷︸︸︷= uH
i Aui = λiu

H
i ui.

Thus, λi = λ∗i , i.e. λi must be real. 2

Property 4: A Hermitian matrix is positive definite (A > 0)
iff the eigenvalues of A are positive.

Similar property holds for negative definite and positive
(negative) semi-definite matrices.
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A useful relationship between matrix determinant and
eigenvalues:

det{A} =
n∏

i=1

λi.

Therefore, a matrix is nonsingular (invertible) iff all of its
eigenvalues are nonzero.

Property 5: The eigenvectors of a Hermitian matrix
corresponding to distinct eigenvalues are othogonal, i.e. if
λi 6= λk, then uH

i uk = 0.

Proof. Let λi and λk be two distinct eigenvalues of A. Then

Aui = λiui, Auk = λkuk.

Multiplying the above equations by uH
k and uH

i , respectively,
we get

uH
k Aui = λiu

H
k ui, uH

i Auk = λku
H
i uk.

Taking the Hermitian transpose of the second equation and
using the fact that A is Hermitian (i.e. AH = A and λ∗k = λk),
yields

uH
k Aui = λku

H
k ui,

leading to

0 = (λi − λk)uH
k ui.
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Since λi 6= λk, we have

uH
k ui = 0.

2

Remark: Although verified above only for the case of distinct
eigenvalues, it is also true that, for any n×n Hermitian matrix,
there exists a set of n orthonormal eigenvectors.
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For any n × n matrix A having a set of linearly independent
eigenvectors, we may perform an eigenvalue decomposition
(EVD):

A = UΛU−1

by rewriting the set of equations

Aui = λiui, i = 1, 2, . . . , n

in the form

A[u1,u2, · · · ,un] = [λ1u1, λ2u2, · · · , λnun],

or, equivalently
AU = UΛ, (4)

where

U = [u1,u2, · · · ,un],

Λ = diag{λ1, λ2, . . . , λn}.

Since we have assumed that U is nonsingular, we can right-
multiply the equation (4) by U−1.
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2.3.9 Eigenvalues and Eigenvectors
(Hermitian matrix)

For a Hermitian matrix, we can always find an orthonormal set
of eigenvectors:

UHU = I.

Hence, U is unitary (i.e. UH = U−1), and the EVD becomes

A = UΛUH

or, equivalently,

A =
n∑

i=1

λiuiu
H
i .

This result is known as the spectral theorem.

Using the unitary property of U , it is easy to find the inverse
of a nonsigular Hermitian matrix via EVD:

A−1 = (UΛUH)−1 = (UH)−1Λ−1U−1 = UΛ−1UH

or, equivalently,

A−1 =
n∑

i=1

1
λi

uiu
H
i .

Hence, the inverse does not affect eigenvectors, but transforms
eigenvalues λi to 1/λi.
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In many DSP applications, matrices may be very close to
singular (ill-conditioned— one or more eigenvalues are close to
zero), and, therefore, their inverse may be unstable. We may
stabilize the problem by adding a constant to each term along
the diagonal (so-called diagonal loading):

A = B + αI.

This operation leaves eigenvectors unchanged, but changes
eigenvalues:

Aui = Bui + αui = (λi + α)ui,

where λi and ui are the eigenvalues and eigenvectors of B:

Bui = λiui.
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2.3.9 Eigenvalues and Eigenvectors — Trace

We can write the trace of A in terms of its eigenvalues:

tr(A) =
n∑

i=1

λi.

Similarly,

tr(A−1) =
n∑

i=1

1
λi

.

This property can be easily shown using the EVD and tr(AB) =
tr(BA).

Denoting the maximum eigenvalue of A by λMAX, if A is
positive semi-definite Hermitian, then

λMAX ≤
n∑

i=1

λi = tr(A).
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Singular Value Decomposition (SVD)

For a rectangular n × m matrix A, we may perform the SVD
instead of EVD:

A = UΛV H

where UUH = UHU = I and V V H = V HV = I and

Λ =

 [Λ(n), 0], n < m[
Λ(m)

0

]
, n > m

,

Λ(m) = diag{λ1, λ2, . . . , λm},

and λi’s are non-negative. Equivalently,

A =
n∑

i=1

λiuiv
H
i if n < m

or

A =
m∑

i=1

λiuiv
H
i if n > m

where ui and vi are the n×1 and m×1 left and right singular
vectors, respectively, and λi’s are singular values.
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Computational Aspects of LS

Solving Normal Equations:

AHAxLS = AHb.

Define
C = AHA, g = AHb.

Solve
CxLS = g,

where C is a positive definite Hermitian matrix.
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Cholesky Decomposition

Also known as the LDLH decomposition:

C = LDLH,

where

L =


1 0 0 · · · 0
l21 1 0 . . . 0
... ... ... ... ...

ln1 ln2 ln3 · · · 1

 (lower triangular matrix)

and D = diag{d1, d2, . . . , dn}, di > 0.

Back-substitution to solve:

LDLHxLS = g.

Cholesky Decomposition Approach to Solving LS: Define
y = DLHxLS. Then

1 0 0 · · · 0
l21 1 0 . . . 0
... ... ... ... ...

ln1 ln2 ln3 · · · 1




y1

y2
...

yn

 =


g1

g2
...

gn

 .
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y1 = g1,

y2 = g2 − l21y1,

yk = gk −
k−1∑
i=1

lkiyi, k = 1, 2, . . . , n.


1 l∗21 · · · l∗n1

0 1 · · · l∗n2
... ... ... ...
0 0 · · · 1




x1

x2
...

xn

 = LHxLS = D−1y =

 y1
d1...
yn
dn

.

xn =
yn

dn
,

xk =
yk

dk
−

n∑
i=k+1

l∗ikxi, k = n− 1, . . .

Note: Solving normal equations using this approach may be
sensitive to numerical errors.
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QR Decomposition Approach to Solving LS

A can be factored as

A = QR = [Q1 Q2]
[

R1

0

]
= Q1R1,

where Q is unitary (i.e. QQH = QHQ) and R1 is square upper
triangular (Matlab: qr). Then

(AHA)−1AH = R−1
1 QH

1

and xLS is obtained by solving the following triangular system:

R1xLS = QH
1 b.

Note: Numerically more robust than Cholesky. For a large
number of overdetermined equations, the QR method needs
about 2× more computations compared with Cholesky.
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