LINEAR ALGEBRA

Appendix A in Stoica & Moses

Ch. 2.3 in Hayes

Here, we follow Ch. 2.3 in Hayes.
2.3.1 Vectors

Let signal be represented by scalar values x1, xo, . . .,

the vector notation is

L1
L2
Tr = _

LN

Vector transpose:
T
r = [5131,&32,...,%]\[].
Hermitian transpose:
H __ TN* _ [k % *
£ _(:C ) _[x17$27°"7$N]‘

xn. Then,

Sometimes, it is convenient to consider sets of vectors, for
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example:
z(n)

ey = | T

:C(n—:N+1)

TE3l

Note: Stoica and Moses use to denote the Hermitian

transpose.
Magnitude of a vector?

Vector Euclidean norm:

N 1/2
]| = {ZI%Q} = Valx
i=1

Scalar (inner) product of two complex vectors a =
lat,...,an]t and b= [by,...,bn]"T:

N
a''b =) "ajb;.
i=1
Cauchy-Schwartz inequality
[a”b| < ||a| - |b]],

where equality holds only iff a and b are colinear (i.e. a = ab).
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Orthogonal vectors:

aflb = ba = 0.

Example: Consider the output of a linear time-invariant (LTI)
system (filter):

y(n) = Z_ h(k)z(n —k) = h' z(n)
where
[ h(0) ] I x(n) ]
b h(sl)  m(n) = z(n 5_ 1)
| A(N —1) | z(n—N+1) |

2.3.2 Linear Independence, Vector Spaces, and Basis
Vectors

A set of vectors 1, xs, ..., x, is said to be linearly independent
if
Q1] + oy + - Ay = 0 (1)

implies that a; = 0 for all 2. If a set of nonzero «a; can be
found so that (1) holds, the vectors are linearly dependent. For
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example, for nonzero aq,

T, = oo + -+ BTy,

Example 2.3.2:
B B
r1=| 2 |, ax=1| 0 linearly independent
- 1 — - 1 —
1] 1 0 ]
x1=| 2 |, o= 1| 0 |, 23= | 1 | linearly dependent
1 | 1] | 0 |

because 1 = x5 + 2x3.

Given N vectors v, v, ...,V N, consider the set of all vectors
) that may be formed as a linear combination of the vectors

V;.
N
VUV — E ao;0;.
=1

This set forms a vector space and the vectors v; are said to
span the space V.

If v;'s are linearly independent, they are said to form a basis
for the space V and the number of basis vectors N is referred
to as the space dimension. The basis for a vector space is not
unique!
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2.3.3 Matrices

n X 1m matrix:

aixz ai2 a1z -+ Qim
az1 Q22 a3 aA2m,
A= {az’j} — a3z1 Q32 a3z - A3m | ,
i an1 an?2 An3 Anm _

If n = m, then A is a square matrix. Symmetric matrix:
Al = A,

Hermitian matrix:
AH = A.

Some properties [apply to transpose ¥

as well]:

(A+ B! =A" 4+ B" (A" =4, (AB)Y = BY A",
Column and row representations of an n X m matrix:

- -

A=le, e, 0m] = (2)
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2.3.4 Matrix Inverse

Rank Discussion: The rank of A = # of linearly independent
columns in (2) = # of linearly independent row vectors in
(2) [i.e. # of linearly independent vectors in {ri,rs,...,7,}].
Important property:

rank(A) = rank(AA™) = rank(A" A).

For any n x m matrix A: rank(A) < min{n,m}.
If rank(A) = min{n,m}, A is said to be of full rank.

If A is a square matrix of full rank, then there exists a unique
matrix A~ !, called the inverse of A:

ATTA=AA"1 =1

where _ i}
1 0 0 --- 0
o1 0 --- 0

I=(0 01 --- 0],

o 0 0 --- 1_

is called the identity matrix.

If a square matrix A (of size n x n) is not of full rank [i.e.
rank(A) < n], then it is said to be singular.

Properties: (AB)™! = B~ 1A~ (A?)~1=(A"1H)H
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Useful Matrix Inversion Identities

Matrix Inversion Lemma:
(A+ BCD) ' =A"'—A"'B(C'+ DA 'B)"'DA™!

for arbitrary square nonsingular A and C. In the special case
where (' is a scalar, B = b is a column vector and D = d? is
a row vector. For C' = 1, we obtain the Woodbury identity:

A-lpdH A1
1+d%A-1p

(A+bd")"t=A4"1—
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2.3.5 The Determinant and the Trace

The determinant of an n x n matrix (for any 7):

n

det(A) = Z(—l)i“aijdet(flz’j)

g=1

where A;; is the (n — 1) x (n — 1) matrix formed by deleting
the 7th row and the jth column of A.

Example:
aix; Gail2 ais
A= az1 G222 a3 )
| a31 a32 Aas3z |
az2 a2 azi1 az
det(A) = aq;det 3| — agpdet 3
a32 ass asp ass
azi1 a2
+a13 det .
asir as2

Property: an n X n matrix A is invertible (nonsingular) iff its
determinant is nonzero,

det(A) #£ 0.
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Properties of the determinant (for n x n matrix A):

det(AB) = det(A) det(B), det(aA) = a" det A
1
~ det A’

det(A™1) det(A") = det A.

Another important function of a matrix is trace:

tI’(A) = zn: Aqq-
1=1
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2.3.6 Linear Equations

Many practical DSP problems [e.g. signal modeling, Wiener
filtering, etc.] require solving a set of linear equations:

a11T1 + a12T2 + - -+ a1 = b1
2121 + a92T2 + - -+ + a9y, = Do
ani1li + An2x92 + -+ AnmLm — bn

In matrix notation:
Ax = b, (3)

where

e Ais an n X m matrix with entries a;;,
e x is an m-dimensional vector of z;'s, and

e b is an n-dimensional vector of b;'s.

For A = [a1,as, -, a,,], we can view (3) as an expansion of

b: .
b= Z r,a;.
1=1
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Square matrix A : m = n. The nature of the solution depends
upon whether or not A is singular.

Nonsingular case:
xr=A"'b.

Singular case: no solution or many solutions.

Example:
r1+ x99 = 1
r1+x92 = 2, no solution.
r1+ 9 = 1
x1+x2 = 1, many solutions.
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Rectangular matrix A : m < n. More equations than
unknowns and, in general, no solution exists. The system
Is called overdetermined.

n
— T

When A is a full-rank matrix and, therefore, AH A is
nonsingular, a common approach is to find the least-squares
solution, i.e. the vector x that minimizes the Euclidean norm
of the error vector:

lell* = b — Az|®
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= (b— Az)" (b - Ax)

= bbb - A"b — b Ax + 2T AP Ax

= [ — (AFA) " AT AP A [z — (AT A)~' AT D)
+b"b — b7 A(ATA) LAY,

The second term is independent of a. Therefore, the LS
solution is

zrs = (AFA)"1AHp,
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The best (LS) approximation b to b is given by
b= Axis = A(ATA)"TA" b = P, b,
where
P, = A(A7A)"1AH
is called the projection matrix with properties:
P.a =a
if the vector a belongs to the column space of A, and

PACL:O

if a is orthogonal to the column space of A.
The minimum LS error:
min |[e|* = ||b— Azys|?

= ||(I - A(A"A)"TAT)b|?
= |[(I = Pa)b|* = | Pyb||* = b Pb,

where P;- = I — P, is the projection matrix onto the subspace
orthogonal to the column space of A.
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Alternatively, the LS solution is found from the normal

equations:
A Ax = AHp.

which follow from the orthogonality principle:

Afle = 0.
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lllustration of LS Solutions

Consider

-
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Rectangular matrix A : n < m.

2.3.6 Linear Equations

Fewer equations than

unknowns and, provided the equations are consistent, there are

many solutions. The system is called underdetermined.

n

A

\//
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2.3.7 Special Matrix Forms

Diagonal (square) matrix:

A=diag{ai1, a2, ..

Exchange matrix:

Toeplitz matrix:

Qi — Qi41,k+1

Example:
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—_ =3 DN =

< a’nn}:

NN~ W

aii

-

0
0 aa2
0O O
0O O
0 1
1 0
0 O
0

N — W N

—= W DN

0
0

a33 )

0

for all 7, k < n.
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2.3.8 Quadratic and Hermitian Forms

Quadratic form of a real symmetric square matrix A:
Q(x) =z’ Ax.

Similarly, Hermitiam form of a Hermitian square matrix A:
Q(x) = ' Ax.

Symmetric (Hermitian) matrices are positive semidefinite if
Q(x) > 0 for all nonzero x. If Q(x) > 0 for all nonzero =,
then A is said to be positive definite.

Example: Matrix A = yy!’ is positive semidefinite, where y
Is an arbitrary complex vector:

Q(z) = z"yy"z = ||z"y|* > 0.
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2.3.9 Eigenvalues and Eigenvectors

Consider the characteristic equation of an n X n matrix A:
Au = \u,

which is equivalent to the following set of homogeneous linear
equations:
(A—A)u =0.

For a nontrivial solution, A — Al needs to be singular. Hence,
p(\) =det(A — AI) =0.

p(\) is called the characteristic polynomial of A, and the n
roots, A\;,2 = 1,...,n,= the eigenvalues of A.

For each eigenvalue )\;, the matrix A — \;I is singular, and
there will be at least one nonzero eigenvector that solves the
equation

Since, for any eigenvector u;, au; will also be an eigenvector,
eigenvectors are often normalized:

|lu;|| =1, i=1,2,...,n.
Property 1: The eigenvectors uq, uo, ..., u, corresponding to
distinct eigenvalues A\i, Ao, ..., A, are linearly independent.
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Property 2: |If rank(A) = m, then there will be n — m
independent solutions to the homogeneous equation Au; = 0.
These solutions form the (so-called) null space of A.

Property 3: The eigenvalues of a Hermitian matrix are real.

Proof. From the characteristic equation Au; = \;u;, we have:
quAuZ- — )\zuf{uz
Applyng © to the above equation, we get

HAH, _ y* H,_
w;' A% u; = \Jup u.

Since A is Hermitian (A = AH), we have

A=AH

Nufu; =ulAu; 2wl Au; = \udl u,.

Thus, \; = A\¥, i.e. A\; must be real. O

1 1

Property 4: A Hermitian matrix is positive definite (A > 0)
iff the eigenvalues of A are positive.

Similar property holds for negative definite and positive
(negative) semi-definite matrices.
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A useful relationship between matrix determinant and
eigenvalues:

det{A} — ﬁ >\7,
=1

Therefore, a matrix is nonsingular (invertible) iff all of its
eigenvalues are nonzero.

Property 5: The eigenvectors of a Hermitian matrix
corresponding to distinct eigenvalues are othogonal, i.e. if
Ai # A, then uf{uk = 0.

Proof. Let \; and \; be two distinct eigenvalues of A. Then

A’U,i = )\Z"U,z', Auk = )\kuk

H
17 !

Multiplying the above equations by ukH and u
we get

respectively,

H H H H
up Au; = \uy, wy,  uw; Aug = A\gu, ug.

Taking the Hermitian transpose of the second equation and
using the fact that A is Hermitian (i.e. A¥ = A and \} = \p),
yields

uﬁAui — )\kukHuz-,
leading to
0= (N — A\p)uy u,;.
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Since \; # \i, we have
u;, u; = 0.

[

Remark: Although verified above only for the case of distinct
eigenvalues, it is also true that, for any n X n Hermitian matrix,
there exists a set of n orthonormal eigenvectors.
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For any n X n matrix A having a set of linearly independent
eigenvectors, we may perform an eigenvalue decomposition

(EVD):
A=UAU!
by rewriting the set of equations
AuZ:Azuz, i:1,2,...,n
in the form
A[u17 U2, - 7un] — [Aluly )\Q'U,Q, R )‘nun]v
or, equivalently
AU = U A, (4)

where

U = [u17u27°"7un]7

A = diag{\1, A2, ., )

Since we have assumed that U is nonsingular, we can right-
multiply the equation (4) by U1,
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2.3.9 Eigenvalues and Eigenvectors
(Hermitian matrix)

For a Hermitian matrix, we can always find an orthonormal set
of eigenvectors:

URU =1T.
Hence, U is unitary (i.e. U = U~1), and the EVD becomes

A=UAUH

or, equivalently,
n
i=1
This result is known as the spectral theorem.

Using the unitary property of U, it is easy to find the inverse
of a nonsigular Hermitian matrix via EVD:

A7l =AUt =TI aT vt =AU

or, equivalently,
1
—1 o H
A" = Z )\iuzuz :
1=1
Hence, the inverse does not affect eigenvectors, but transforms
eigenvalues \; to 1/\;.
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In many DSP applications, matrices may be very close to
singular (ill-conditioned— one or more eigenvalues are close to
zero), and, therefore, their inverse may be unstable. We may
stabilize the problem by adding a constant to each term along
the diagonal (so-called diagonal loading):

A=B-+al.

This operation leaves eigenvectors unchanged, but changes
eigenvalues:

Au; = Bu; + au; = (\; + a)u;,
where )\; and u,; are the eigenvalues and eigenvectors of B:
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2.3.9 Eigenvalues and Eigenvectors — Trace

We can write the trace of A in terms of its eigenvalues:

Similarly,
o1
tr(A_l) = Z)\—
i=1 """

This property can be easily shown using the EVD and tr(AB) =
tr(BA).

Denoting the maximum eigenvalue of A by Ayax, if A is
positive semi-definite Hermitian, then

>\MAX S Z >\’L = tI’(A)

1=1
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Singular Value Decomposition (SVD)

For a rectangular n X m matrix A, we may perform the SVD
instead of EVD:

A=UAVH
where UUY = UHU =T and VVH = VHEV = [ and

[A(n), 0], n<m
A = [A?w]7n>m,

A(m) = diag{ii, A2, ..., A},
and )\;’'s are non-negative. Equivalently,
A= Zn:)\iuiv,{{ ifn<m
or

A:Z)\iuivzﬂ if n>m

where u; and v; are the n X 1 and m x 1 left and right singular
vectors, respectively, and \;'s are singular values.
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Pictorial representation of the SVD:

Fri
n{ A = U O
VH
F1L<<rr
< L 2
VH
7z A | = U
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Computational Aspects of LS

Solving Normal Equations:

AT Azrg = APD.

Define
C = AHA, g = Afp.

Solve
Cxis =g,

where C' is a positive definite Hermitian matrix.
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Cholesky Decomposition

Also known as the LDL* decomposition:

C =LDL",
where
1 0 0 0
L= 21 1 X 0 (lower triangular matrix)

and D = diag{dl, dg, ce ,dn}, dz > 0.

Back-substitution to solve:
LDz g =g.

Cholesky Decomposition Approach to Solving LS: Define
y = DL x15. Then
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10 0 Y1 g1
loyr 1 0 Y2 92
i lnl ln2 lnS i Un dn




yr — 4gi,

Y2 = g2 — la1yi,
k—1
Yk = gk—Zl]%yz, ]43:1,2,...,’”.
i=1
_1131 :1__331_ —%—
* 1
oo n? 2 =g =Dly=|
: Yn
0 0 L || ©n | - dp
z, = In
n dnj
T = Ik _ z”: lxiy, k=n—1,...
dr '
1=k-+1

Note: Solving normal equations using this approach may be
sensitive to numerical errors.
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QR Decomposition Approach to Solving LS

A can be factored as

A=QR=[Q: Q2] [ }81 ] = Q1 Ry,

where () is unitary (i.e. QQY = Q¥ Q) and R; is square upper
triangular (Matlab: qr). Then

(AHA)—lAH _ Rl_lQ{—I
and xr,g is obtained by solving the following triangular system:

leLS = Q{{b

Note: Numerically more robust than Cholesky. For a large
number of overdetermined equations, the QR method needs
about 2x more computations compared with Cholesky.
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