LINEAR ALGEBRA Appendix A in Stoica & Moses Ch. 2.3 in Hayes

Here, we follow Ch. 2.3 in Hayes.

2.3.1 Vectors

Let signal be represented by scalar values x_1, x_2, \ldots, x_N . Then, the vector notation is

$$oldsymbol{x} = \left[egin{array}{c} x_1 \ x_2 \ dots \ x_N \end{array}
ight]$$

Vector transpose:

$$\boldsymbol{x}^T = [x_1, x_2, \dots, x_N].$$

Hermitian transpose:

$$\boldsymbol{x}^{H} = (x^{T})^{*} = [x_{1}^{*}, x_{2}^{*}, \dots, x_{N}^{*}].$$

Sometimes, it is convenient to consider sets of vectors, for

EE 524, Fall 2004, # 6

example:

$$\boldsymbol{x}(n) = \begin{bmatrix} x(n) \\ x(n-1) \\ \vdots \\ x(n-N+1) \end{bmatrix}$$

Note: Stoica and Moses use "*" to denote the Hermitian transpose.

Magnitude of a vector?

Vector Euclidean norm:

$$\|\boldsymbol{x}\| = \left\{\sum_{i=1}^{N} |x_i|^2\right\}^{1/2} = \sqrt{\boldsymbol{x}^H \boldsymbol{x}}$$

Scalar (inner) product of two complex vectors $\boldsymbol{a} = [a_1, \ldots, a_N]^T$ and $\boldsymbol{b} = [b_1, \ldots, b_N]^T$:

$$\boldsymbol{a}^H \boldsymbol{b} = \sum_{i=1}^N a_i^* b_i.$$

Cauchy-Schwartz inequality

$$|\boldsymbol{a}^{H}\boldsymbol{b}| \leq \|\boldsymbol{a}\|\cdot\|\boldsymbol{b}\|,$$

where equality holds only iff a and b are colinear (i.e. $a = \alpha b$).

Orthogonal vectors:

$$\boldsymbol{a}^{H}\boldsymbol{b} = \boldsymbol{b}^{H}\boldsymbol{a} = 0.$$

Example: Consider the output of a linear time-invariant (LTI) system (filter):

$$y(n) = \sum_{k=0}^{N-1} h(k)x(n-k) = \boldsymbol{h}^T \boldsymbol{x}(n)$$

where

$$\boldsymbol{h} = \begin{bmatrix} h(0) \\ h(1) \\ \vdots \\ h(N-1) \end{bmatrix}, \quad \boldsymbol{x}(n) = \begin{bmatrix} x(n) \\ x(n-1) \\ \vdots \\ x(n-N+1) \end{bmatrix}$$

2.3.2 Linear Independence, Vector Spaces, and Basis Vectors

A set of vectors $\boldsymbol{x}_1, \boldsymbol{x}_2, \dots, \boldsymbol{x}_n$ is said to be *linearly independent* if

$$\alpha_1 \boldsymbol{x}_1 + \alpha_2 \boldsymbol{x}_2 + \cdots + \alpha_n \boldsymbol{x}_n = 0 \tag{1}$$

implies that $\alpha_i = 0$ for all *i*. If a set of nonzero α_i can be found so that (1) holds, the vectors are *linearly dependent*. For

example, for nonzero α_1 ,

$$\boldsymbol{x}_1 = \beta_2 \boldsymbol{x}_2 + \cdots \beta_n \boldsymbol{x}_n.$$

Example 2.3.2:

$$oldsymbol{x}_1 = \left[egin{array}{c} 1 \\ 2 \\ 1 \end{array}
ight], \quad oldsymbol{x}_2 = \left[egin{array}{c} 1 \\ 0 \\ 1 \end{array}
ight] \quad ext{linearly independent}$$

$$oldsymbol{x}_1 = egin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, \ oldsymbol{x}_2 = egin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \ oldsymbol{x}_3 = egin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$
 linearly dependent because $oldsymbol{x}_1 = oldsymbol{x}_2 + 2oldsymbol{x}_3$.

Given N vectors v_1, v_2, \ldots, v_N , consider the set of all vectors V that may be formed as a linear combination of the vectors v_i :

$$\boldsymbol{v} = \sum_{i=1}^{N} \alpha_i \boldsymbol{v}_i.$$

This set forms a *vector space* and the vectors v_i are said to *span* the space \mathcal{V} .

If v_i 's are linearly independent, they are said to form a *basis* for the space \mathcal{V} and the number of basis vectors N is referred to as the space *dimension*. The basis for a vector space is not unique!

2.3.3 Matrices

 $n \times m$ matrix:

$$A = \{a_{ij}\} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1m} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2m} \\ a_{31} & a_{32} & a_{33} & \cdots & a_{3m} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \cdots & a_{nm} \end{bmatrix},$$

If n = m, then A is a square matrix. Symmetric matrix:

$$A^T = A$$

Hermitian matrix:

 $A^H = A.$

Some properties [apply to transpose T as well]:

 $(A+B)^{H} = A^{H} + B^{H}, \quad (A^{H})^{H} = A, \quad (AB)^{H} = B^{H}A^{H}.$

Column and row representations of an $n \times m$ matrix:

$$A = [\boldsymbol{c}_1, \boldsymbol{c}_2, \cdots, \boldsymbol{c}_m] = \begin{bmatrix} \boldsymbol{r}_1^H \\ \boldsymbol{r}_2^H \\ \vdots \\ \boldsymbol{r}_n^H \end{bmatrix}$$
(2)

2.3.4 Matrix Inverse

Rank Discussion: The *rank* of $A \equiv \#$ of linearly independent columns in (2) $\equiv \#$ of linearly independent row vectors in (2) [i.e. # of linearly independent vectors in $\{r_1, r_2, \ldots, r_n\}$]. Important property:

$$\operatorname{rank}(A) = \operatorname{rank}(AA^H) = \operatorname{rank}(A^HA).$$

For any $n \times m$ matrix A: rank $(A) \leq \min\{n, m\}$.

If $rank(A) = min\{n, m\}$, A is said to be of *full rank*.

If A is a square matrix of full rank, then there exists a unique matrix A^{-1} , called the *inverse* of A:

$$A^{-1}A = AA^{-1} = I$$

where

$$I = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{bmatrix},$$

is called the *identity matrix*.

If a square matrix A (of size $n \times n$) is not of full rank [i.e. rank(A) < n], then it is said to be *singular*.

Properties: $(AB)^{-1} = B^{-1}A^{-1}, (A^H)^{-1} = (A^{-1})^H.$

Useful Matrix Inversion Identities

Matrix Inversion Lemma:

$$(A + BCD)^{-1} = A^{-1} - A^{-1}B(C^{-1} + DA^{-1}B)^{-1}DA^{-1}$$

for arbitrary square nonsingular A and C. In the special case where C is a scalar, $B = \mathbf{b}$ is a column vector and $D = \mathbf{d}^{H}$ is a row vector. For C = 1, we obtain the Woodbury identity:

$$(A + bd^{H})^{-1} = A^{-1} - \frac{A^{-1}b d^{H}A^{-1}}{1 + d^{H}A^{-1}b}$$

2.3.5 The Determinant and the Trace

The determinant of an $n \times n$ matrix (for any *i*):

$$\det(A) = \sum_{j=1}^{n} (-1)^{i+j} a_{ij} \det(A_{ij})$$

where A_{ij} is the $(n-1) \times (n-1)$ matrix formed by deleting the *i*th row and the *j*th column of A.

Example:

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix},$$
$$\det(A) = a_{11} \det \begin{bmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{bmatrix} - a_{12} \det \begin{bmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{bmatrix} + a_{13} \det \begin{bmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix}.$$

Property: an $n \times n$ matrix A is invertible (nonsingular) iff its determinant is nonzero,

$$\det(A) \neq 0.$$

Properties of the determinant (for $n \times n$ matrix A):

$$det(AB) = det(A) det(B), \qquad det(\alpha A) = \alpha^n det A$$
$$det(A^{-1}) = \frac{1}{det A}, \qquad det(A^T) = det A.$$

Another important function of a matrix is *trace*:

$$\operatorname{tr}(A) = \sum_{i=1}^{n} a_{ii}.$$

2.3.6 Linear Equations

Many practical DSP problems [e.g. signal modeling, Wiener filtering, etc.] require solving a set of linear equations:

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1m}x_m = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2m}x_m = b_2$$

$$\vdots$$

$$a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nm}x_m = b_n$$

In matrix notation:

$$A\boldsymbol{x} = \boldsymbol{b},\tag{3}$$

where

- A is an $n \times m$ matrix with entries a_{ij} ,
- \boldsymbol{x} is an *m*-dimensional vector of x_i 's, and
- **b** is an *n*-dimensional vector of b_i 's.

For $A = [a_1, a_2, \cdots, a_m]$, we can view (3) as an expansion of **b**:

$$\boldsymbol{b} = \sum_{i=1}^{m} x_i \boldsymbol{a}_i.$$

EE 524, Fall 2004, # 6

Square matrix A: m = n. The nature of the solution depends upon whether or not A is singular.

Nonsingular case:

$$\boldsymbol{x} = A^{-1}\boldsymbol{b}.$$

Singular case: no solution or many solutions.

Example:

$$\begin{array}{rcl} x_1+x_2 &=& 1\\ x_1+x_2 &=& 2, & \text{no solution.} \end{array}$$

$$x_1 + x_2 = 1$$

 $x_1 + x_2 = 1$, many solutions.

Rectangular matrix A : m < n. More equations than unknowns and, in general, *no solution exists*. The system is called *overdetermined*.

When A is a full-rank matrix and, therefore, $A^H A$ is nonsingular, a common approach is to find the *least-squares solution*, i.e. the vector x that minimizes the Euclidean norm of the error vector:

 $\|e\|^2 = \|b - Ax\|^2$

$$= (\boldsymbol{b} - A\boldsymbol{x})^{H}(\boldsymbol{b} - A\boldsymbol{x})$$

$$= \boldsymbol{b}^{H}\boldsymbol{b} - \boldsymbol{x}^{H}A^{H}\boldsymbol{b} - \boldsymbol{b}^{H}A\boldsymbol{x} + \boldsymbol{x}^{H}A^{H}A\boldsymbol{x}$$

$$= [\boldsymbol{x} - (A^{H}A)^{-1}A^{H}\boldsymbol{b}]^{H}A^{H}A[\boldsymbol{x} - (A^{H}A)^{-1}A^{H}\boldsymbol{b}]$$

$$+ [\boldsymbol{b}^{H}\boldsymbol{b} - \boldsymbol{b}^{H}A(A^{H}A)^{-1}A^{H}\boldsymbol{b}].$$

The second term is *independent* of x. Therefore, the LS solution is

$$\boldsymbol{x}_{\rm LS} = (A^H A)^{-1} A^H \boldsymbol{b}.$$

The best (LS) approximation \widehat{b} to b is given by

$$\widehat{\boldsymbol{b}} = A\boldsymbol{x}_{\mathrm{LS}} = A(A^H A)^{-1} A^H \, \boldsymbol{b} = P_A \, \boldsymbol{b},$$

where

$$P_A = A(A^H A)^{-1} A^H$$

is called the *projection matrix* with properties:

$$P_A \boldsymbol{a} = \boldsymbol{a}$$

if the vector \boldsymbol{a} belongs to the column space of A, and

 $P_A a = 0$

if a is orthogonal to the column space of A.

The minimum LS error:

$$\min \|\boldsymbol{e}\|^2 = \|\boldsymbol{b} - A\boldsymbol{x}_{\text{LS}}\|^2 = \|(I - A(A^H A)^{-1} A^H)\boldsymbol{b}\|^2 = \|(I - P_A)\boldsymbol{b}\|^2 = \|P_A^{\perp}\boldsymbol{b}\|^2 = \boldsymbol{b}^H P_A^{\perp} \boldsymbol{b},$$

where $P_A^{\perp} = I - P_A$ is the projection matrix onto the subspace orthogonal to the column space of A.

Alternatively, the LS solution is found from the *normal* equations:

$$A^H A \boldsymbol{x} = A^H \boldsymbol{b}.$$

which follow from the *orthogonality principle*:

$$A^H \boldsymbol{e} = \boldsymbol{0}.$$

Illustration of LS Solutions

Consider

2.3.6 Linear Equations

Rectangular matrix A : n < m. Fewer equations than unknowns and, provided the equations are consistent, there are *many solutions*. The system is called *underdetermined*.

2.3.7 Special Matrix Forms

Diagonal (square) matrix:

$$A = \operatorname{diag} \{a_{11}, a_{22}, \dots, a_{nn}\} = \begin{bmatrix} a_{11} & 0 & 0 & \cdots & 0 \\ 0 & a_{22} & 0 & \cdots & 0 \\ 0 & 0 & a_{33} & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & a_{nn} \end{bmatrix}$$

Exchange matrix:

$$J = \begin{bmatrix} 0 & \cdots & 0 & 0 & 1 \\ 0 & \cdots & 0 & 1 & 0 \\ 0 & \cdots & 1 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & 0 & 0 & \cdots & 0 \end{bmatrix}.$$

Toeplitz matrix:

$$a_{ik} = a_{i+1,k+1}$$
 for all $i, k < n$.

Example:

$$A = \begin{bmatrix} 1 & 3 & 2 & 4 \\ 2 & 1 & 3 & 2 \\ 7 & 2 & 1 & 3 \\ 1 & 7 & 2 & 1 \end{bmatrix}.$$

2.3.8 Quadratic and Hermitian Forms

Quadratic form of a real symmetric square matrix A:

$$Q(\boldsymbol{x}) = \boldsymbol{x}^T A \boldsymbol{x}.$$

Similarly, Hermitiam form of a Hermitian square matrix A:

$$Q(\boldsymbol{x}) = \boldsymbol{x}^H A \boldsymbol{x}.$$

Symmetric (Hermitian) matrices are *positive semidefinite* if $Q(x) \ge 0$ for all nonzero x. If Q(x) > 0 for all nonzero x, then A is said to be *positive definite*.

Example: Matrix $A = yy^H$ is positive semidefinite, where y is an arbitrary complex vector:

$$Q(\boldsymbol{x}) = \boldsymbol{x}^{H} \boldsymbol{y} \boldsymbol{y}^{H} \boldsymbol{x} = \| \boldsymbol{x}^{H} \boldsymbol{y} \|^{2} \ge 0.$$

2.3.9 Eigenvalues and Eigenvectors

Consider the *characteristic equation* of an $n \times n$ matrix A:

 $A\boldsymbol{u} = \lambda \boldsymbol{u},$

which is equivalent to the following set of homogeneous linear equations:

 $(A - \lambda I)\boldsymbol{u} = \boldsymbol{0}.$

For a nontrivial solution, $A - \lambda I$ needs to be singular. Hence,

$$p(\lambda) = \det(A - \lambda I) = 0.$$

 $p(\lambda)$ is called the characteristic polynomial of A, and the n roots, $\lambda_i, i = 1, \ldots, n, \equiv$ the *eigenvalues* of A.

For each eigenvalue λ_i , the matrix $A - \lambda_i I$ is singular, and there will be at least one nonzero *eigenvector* that solves the equation

$$A\boldsymbol{u}_i = \lambda_i \boldsymbol{u}_i.$$

Since, for any eigenvector u_i , αu_i will also be an eigenvector, eigenvectors are often normalized:

$$\|oldsymbol{u}_i\|=1,\quad i=1,2,\ldots,n.$$

Property 1: The eigenvectors u_1, u_2, \ldots, u_n corresponding to *distinct* eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$ are linearly independent.

Property 2: If rank(A) = m, then there will be n - m independent solutions to the homogeneous equation $Au_i = 0$. These solutions form the (so-called) *null space* of A.

Property 3: The eigenvalues of a Hermitian matrix are *real*.

Proof. From the characteristic equation $Au_i = \lambda_i u_i$, we have:

$$\boldsymbol{u}_i^H A \boldsymbol{u}_i = \lambda_i \boldsymbol{u}_i^H \boldsymbol{u}_i.$$

Applying H to the above equation, we get

$$\boldsymbol{u}_i^H A^H \boldsymbol{u}_i = \lambda_i^* \boldsymbol{u}_i^H \boldsymbol{u}_i.$$

Since A is Hermitian $(A = A^H)$, we have

$$\lambda_i^* \boldsymbol{u}_i^H \boldsymbol{u}_i = \boldsymbol{u}_i^H A^H \boldsymbol{u}_i \stackrel{A = A^H}{\longleftarrow} \boldsymbol{u}_i^H A \boldsymbol{u}_i = \lambda_i \boldsymbol{u}_i^H \boldsymbol{u}_i.$$

Thus, $\lambda_i = \lambda_i^*$, i.e. λ_i must be *real*. \Box

Property 4: A Hermitian matrix is *positive definite* (A > 0) iff the eigenvalues of A are positive.

Similar property holds for negative definite and positive (negative) semi-definite matrices.

EE 524, Fall 2004, # 6

A useful relationship between matrix determinant and eigenvalues:

$$\det\{A\} = \prod_{i=1}^{n} \lambda_i.$$

Therefore, a matrix is nonsingular (invertible) iff *all* of its eigenvalues are nonzero.

Property 5: The eigenvectors of a Hermitian matrix corresponding to distinct eigenvalues are *othogonal*, i.e. if $\lambda_i \neq \lambda_k$, then $\boldsymbol{u}_i^H \boldsymbol{u}_k = 0$.

Proof. Let λ_i and λ_k be two distinct eigenvalues of A. Then

$$A\boldsymbol{u}_i = \lambda_i \boldsymbol{u}_i, \quad A\boldsymbol{u}_k = \lambda_k \boldsymbol{u}_k.$$

Multiplying the above equations by \boldsymbol{u}_k^H and \boldsymbol{u}_i^H , respectively, we get

$$\boldsymbol{u}_{k}^{H}A\boldsymbol{u}_{i} = \lambda_{i}\boldsymbol{u}_{k}^{H}\boldsymbol{u}_{i}, \quad \boldsymbol{u}_{i}^{H}A\boldsymbol{u}_{k} = \lambda_{k}\boldsymbol{u}_{i}^{H}\boldsymbol{u}_{k}.$$

Taking the Hermitian transpose of the second equation and using the fact that A is Hermitian (i.e. $A^H = A$ and $\lambda_k^* = \lambda_k$), yields

$$\boldsymbol{u}_k^H A \boldsymbol{u}_i = \lambda_k \boldsymbol{u}_k^H \boldsymbol{u}_i,$$

leading to

$$0 = (\lambda_i - \lambda_k) \boldsymbol{u}_k^H \boldsymbol{u}_i.$$

EE 524, Fall 2004, # 6

Since $\lambda_i \neq \lambda_k$, we have

$$\boldsymbol{u}_k^H \boldsymbol{u}_i = 0.$$

Remark: Although verified above only for the case of distinct eigenvalues, it is also true that, for any $n \times n$ Hermitian matrix, there exists a set of n orthonormal eigenvectors.

For any $n \times n$ matrix A having a set of linearly independent eigenvectors, we may perform an eigenvalue decomposition (EVD):

$$A = U\Lambda U^{-1}$$

by rewriting the set of equations

$$A\boldsymbol{u}_i = \lambda_i \boldsymbol{u}_i, \quad i = 1, 2, \dots, n$$

in the form

$$A[\boldsymbol{u}_1, \boldsymbol{u}_2, \cdots, \boldsymbol{u}_n] = [\lambda_1 \boldsymbol{u}_1, \lambda_2 \boldsymbol{u}_2, \cdots, \lambda_n \boldsymbol{u}_n],$$

or, equivalently

$$AU = U\Lambda, \tag{4}$$

where

$$U = [\boldsymbol{u}_1, \boldsymbol{u}_2, \cdots, \boldsymbol{u}_n],$$

$$\Lambda = \operatorname{diag}\{\lambda_1, \lambda_2, \dots, \lambda_n\}.$$

Since we have assumed that U is nonsingular, we can rightmultiply the equation (4) by U^{-1} .

2.3.9 Eigenvalues and Eigenvectors (Hermitian matrix)

For a Hermitian matrix, we can *always* find an orthonormal set of eigenvectors:

 $U^H U = I.$

Hence, U is unitary (i.e. $U^H = U^{-1}$), and the EVD becomes

$$A = UAU^H$$

or, equivalently,

$$A = \sum_{i=1}^{n} \lambda_i \boldsymbol{u}_i \boldsymbol{u}_i^H.$$

This result is known as the *spectral theorem*.

Using the unitary property of U, it is easy to find the inverse of a nonsigular Hermitian matrix via EVD:

$$A^{-1} = (U\Lambda U^H)^{-1} = (U^H)^{-1}\Lambda^{-1}U^{-1} = U\Lambda^{-1}U^H$$

or, equivalently,

$$A^{-1} = \sum_{i=1}^{n} \frac{1}{\lambda_i} \boldsymbol{u}_i \boldsymbol{u}_i^H.$$

Hence, the inverse does not affect eigenvectors, but transforms eigenvalues λ_i to $1/\lambda_i$.

EE 524, Fall 2004, # 6

In many DSP applications, matrices may be very close to singular (*ill-conditioned*— one or more eigenvalues are close to zero), and, therefore, their inverse may be unstable. We may stabilize the problem by adding a constant to each term along the diagonal (so-called *diagonal loading*):

$$A = B + \alpha I.$$

This operation *leaves eigenvectors unchanged*, but *changes* eigenvalues:

$$A\boldsymbol{u}_i = B\boldsymbol{u}_i + \alpha \boldsymbol{u}_i = (\lambda_i + \alpha)\boldsymbol{u}_i,$$

where λ_i and u_i are the eigenvalues and eigenvectors of B:

$$B\boldsymbol{u}_i = \lambda_i \boldsymbol{u}_i.$$

2.3.9 Eigenvalues and Eigenvectors — Trace

We can write the trace of A in terms of its eigenvalues:

$$\operatorname{tr}(A) = \sum_{i=1}^{n} \lambda_i.$$

Similarly,

$$\operatorname{tr}(A^{-1}) = \sum_{i=1}^{n} \frac{1}{\lambda_i}.$$

This property can be easily shown using the EVD and tr(AB) = tr(BA).

Denoting the maximum eigenvalue of A by $\lambda_{\rm MAX},$ if A is positive semi-definite Hermitian, then

$$\lambda_{\text{MAX}} \le \sum_{i=1}^{n} \lambda_i = \operatorname{tr}(A).$$

Singular Value Decomposition (SVD)

For a rectangular $n \times m$ matrix A, we may perform the SVD instead of EVD:

 $A = U\Lambda V^H$

where $UU^H = U^H U = I$ and $VV^H = V^H V = I$ and

$$\Lambda = \begin{cases} [\Lambda(n), 0], & n < m \\ \begin{bmatrix} \Lambda(m) \\ 0 \end{bmatrix}, & n > m \end{cases},$$

$$\Lambda(m) = \operatorname{diag}\{\lambda_1, \lambda_2, \dots, \lambda_m\},$$

and λ_i 's are non-negative. Equivalently,

$$A = \sum_{i=1}^n \lambda_i oldsymbol{u}_i oldsymbol{v}_i^H$$
 if $n < m$

or

$$A = \sum_{i=1}^m \lambda_i \boldsymbol{u}_i \boldsymbol{v}_i^H$$
 if $n > m$

where u_i and v_i are the $n \times 1$ and $m \times 1$ left and right singular vectors, respectively, and λ_i 's are singular values.

EE 524, Fall 2004, # 6

Pictorial representation of the SVD:

Computational Aspects of LS

Solving Normal Equations:

$$A^H A \boldsymbol{x}_{\rm LS} = A^H \boldsymbol{b}.$$

Define

$$C = A^H A, \quad \boldsymbol{g} = A^H \boldsymbol{b}.$$

Solve

$$C\boldsymbol{x}_{\mathrm{LS}} = \boldsymbol{g},$$

where C is a positive definite Hermitian matrix.

Cholesky Decomposition

Also known as the LDL^H decomposition:

 $C = LDL^H,$

where

$$L = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ l_{21} & 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ l_{n1} & l_{n2} & l_{n3} & \cdots & 1 \end{bmatrix}$$

(lower triangular matrix)

and
$$D = \text{diag}\{d_1, d_2, \dots, d_n\}, d_i > 0.$$

Back-substitution to solve:

$$LDL^H \boldsymbol{x}_{\mathrm{LS}} = \boldsymbol{g}.$$

Cholesky Decomposition Approach to Solving LS: Define $y = DL^H x_{\text{LS}}$. Then

$$\begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ l_{21} & 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ l_{n1} & l_{n2} & l_{n3} & \cdots & 1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} g_1 \\ g_2 \\ \vdots \\ g_n \end{bmatrix}$$

$$y_1 = g_1,$$

$$y_2 = g_2 - l_{21}y_1,$$

$$y_k = g_k - \sum_{i=1}^{k-1} l_{ki}y_i, \quad k = 1, 2, \dots, n.$$

$$\begin{bmatrix} 1 & l_{21}^* & \cdots & l_{n1}^* \\ 0 & 1 & \cdots & l_{n2}^* \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = L^H \boldsymbol{x}_{\mathrm{LS}} = D^{-1} \boldsymbol{y} = \begin{bmatrix} \frac{y_1}{d_1} \\ \vdots \\ \frac{y_n}{d_n} \end{bmatrix}.$$

$$x_n = \frac{y_n}{d_n},$$

$$x_k = \frac{y_k}{d_k} - \sum_{i=k+1}^n l_{ik}^* x_i, \quad k = n-1, \dots$$

Note: Solving normal equations using this approach may be sensitive to numerical errors.

QR Decomposition Approach to Solving LS

 \boldsymbol{A} can be factored as

$$A = QR = \begin{bmatrix} Q_1 & Q_2 \end{bmatrix} \begin{bmatrix} R_1 \\ 0 \end{bmatrix} = Q_1 R_1,$$

where Q is unitary (i.e. $QQ^H = Q^H Q$) and R_1 is square upper triangular (Matlab: qr). Then

$$(A^H A)^{-1} A^H = R_1^{-1} Q_1^H$$

and $x_{
m LS}$ is obtained by solving the following triangular system:

$$R_1 \boldsymbol{x}_{\rm LS} = Q_1^H \boldsymbol{b}.$$

Note: Numerically more robust than Cholesky. For a large number of overdetermined equations, the QR method needs about $2\times$ more computations compared with Cholesky.