Types of Digital Signals

- Unit step signal

$$
u(n) \equiv \begin{cases}1, & n \geq 0 \\ 0, & n<0\end{cases}
$$

- Unit impulse (unit sample)

$$
\left.\begin{array}{c}
\delta(n) \equiv \begin{cases}1, & n=0 \\
0, & n \neq 0\end{cases} \\
u(n)=\sum_{m=-\infty}^{n} \delta(m) \quad \text { summing }
\end{array}\right\} \begin{aligned}
& \delta(n)=u(n)-u(n-1) \quad \text { differencing. }
\end{aligned}
$$

- Complex exponentials (cisoids)

$$
x(n)=A \exp [j(\omega n+\theta)]
$$

obtained by sampling an analog cisoid

$$
x_{\mathrm{a}}(t)=A \exp [j(\Omega t+\theta)]
$$

i.e. $x(n)=x_{\mathrm{a}}(n T)$, where T is the sampling interval. Thus,

$$
\omega=\Omega T, \quad \text { or, equivalently, } \quad f=\frac{F}{F_{\mathrm{s}}}
$$

(using $F_{\mathrm{s}}=1 / T, \omega=2 \pi f, \Omega=2 \pi F$),

- Sinusoids

$$
x(n)=A \sin (\omega n+\theta)
$$

Useful properties:

$$
\begin{aligned}
\exp [j(\omega n+\theta)] & =\cos (\omega n+\theta)+j \sin (\omega n+\theta) \\
\cos (\omega n+\theta) & =\frac{\exp [j(\omega n+\theta)]+\exp [-j(\omega n+\theta)]}{2} \\
\sin (\omega n+\theta) & =\frac{\exp [j(\omega n+\theta)]-\exp [-j(\omega n+\theta)]}{2 j}
\end{aligned}
$$

A sine wave as the projection of a complex phasor onto the imaginary axis:

Sampled vs. Analog Exponentials

- Analog exponentials and (co)sinusoids are periodic with $T=$ $2 \pi / \Omega$, discrete-time sinusoids are not necessarily periodic (although their values lie on a periodic envelope.)

Periodicity condition: (also for sines and cosines)

$$
\begin{aligned}
x(n)= & x(n+N) \Longrightarrow e^{j \omega n}=e^{j \omega(n+N)} \Longrightarrow \exp (j \omega N)=1 \\
& \Longrightarrow \omega=\frac{2 \pi m}{N} \quad m \text { integer, or } \quad f=\frac{m}{N} \quad(\omega=2 \pi f)
\end{aligned}
$$

- For sampled exponentials, the frequency ω is expressed in radians, rather than radians/second.
- Digital signals have ambiguity.

Ambiguity in Discrete-time Signals

The unit-step function and one of many analog signals which can be drawn through its sample points

Ambiguity Condition for Discrete-time Sinusoids

$$
\begin{array}{r}
\sin \left(\Omega_{1} T\right)=\sin \left(\Omega_{2} T\right), \quad \Omega_{1} \neq \Omega_{2} \Rightarrow \\
2 \pi F_{1} T=2 \pi F_{2} T+2 \pi m, \quad m=\ldots,-2,-1,1,2, \ldots \Rightarrow \\
\left|F_{1}-F_{2}\right|=\frac{m}{T}=m F_{\mathrm{s}}, \quad m=1,2, \ldots
\end{array}
$$

Example: lowpass signal (with spectrum $|X(F)|^{2}$ concentrated in the interval $\left[-F_{\mathrm{m}}, F_{\mathrm{m}}\right]$):

Taking $F_{1}=F_{\mathrm{m}}$ and $F_{2}=-F_{\mathrm{m}}$, it follows that there is no ambiguity if the signal is sampled with

$$
F_{\mathrm{s}}=\frac{1}{T}>2 F_{\mathrm{m}} .
$$

where F_{s} is the sampling frequency. The above equation is a particular form of the sampling theorem.

- The frequency $F_{\mathrm{N}}=2 F_{\mathrm{m}}$ is referred to as the Nyquist rate.
- Discrete-time signal ambiguity is often termed as the aliasing effect.

Discrete-time Systems

$$
y(n)=\mathcal{T}[x(n)]
$$

where $\mathcal{T}[\cdot]$ denotes the transformation (operator) that maps an input sequence $x(n)$ into an output sequence $y(n)$.

Linear system: a system is linear if it obeys the superposition principle:

The response of the system to the weighted sum of signals \equiv corresponding weighted sum of the responses (outputs) of the system to each of the individual input signals. Mathematically:

$$
\begin{aligned}
\mathcal{T}\left[a x_{1}(n)+b x_{2}(n)\right] & =a \mathcal{T}\left[x_{1}(n)\right]+b \mathcal{T}\left[x_{2}(n)\right] \\
& =a y_{1}(n)+b y_{2}(n)
\end{aligned}
$$

$a x_{1}(n)+b x_{2}(n)$. Linear system $\mathcal{T}[\cdot]$

Example: (Square-law device) Let $y(n)=x^{2}(n)$ (i.e. $\mathcal{T}[\cdot]=$ $\left.(\cdot)^{2}\right)$. Then

$$
\begin{aligned}
\mathcal{T}\left[x_{1}(n)+x_{2}(n)\right] & =x_{1}^{2}(n)+x_{2}^{2}(n)+2 x_{1}(n) x_{2}(n) \\
& \neq x_{1}^{2}(n)+x_{2}^{2}(n)
\end{aligned}
$$

Hence, the system is nonlinear!

A time-invariant (or shift-invariant) system has input-output properties that do not change in time:

$$
\text { if } \quad y(n)=\mathcal{T}[x(n)] \Longrightarrow y(n-k)=\mathcal{T}[x(n-k)] .
$$

Linear time-invariant (LTI) system is a system that is both linear and time-invariant [sometimes referred to as linear shiftinvariant (LSI) system].

Discrete-time Signals via Shifted Impulse Functions

$$
x(n)=\sum_{k=-\infty}^{\infty} x(k) \delta(n-k) .
$$

Response of LTI System

Let $h(n)$ be the response of the system to $\delta(n)$. Due to the time-invariance property, the response to $\delta(n-k)$ is simply $h(n-k)$. Thus

$$
\begin{aligned}
y(n) & =\mathcal{T}[x(n)]=\mathcal{T}\left[\sum_{k=-\infty}^{\infty} x(k) \delta(n-k)\right] \\
& =\sum_{k=-\infty}^{\infty} x(k) \mathcal{T}[\delta(n-k)] \\
& =\sum_{k=-\infty}^{\infty} x(k) h(n-k) \\
& =\{x(n)\} \star\{h(n)\} \quad \text { convolution sum. }
\end{aligned}
$$

The sequence $\{h(n)\} \equiv$ impulse response of LTI system.

Convolution: Properties

An important property of convolution:

$$
\begin{aligned}
\{x(n)\} \star\{h(n)\} & =\sum_{k=-\infty}^{\infty} x(k) h(n-k) \\
& =\sum_{k=-\infty}^{\infty} h(k) x(n-k) \\
& =\{h(n)\} \star\{x(n)\}
\end{aligned}
$$

i.e. the order in which two sequences are convolved is unimportant!

Other properties:

$$
\begin{aligned}
& \{x(n)\} \star\left[\left\{h_{1}(n)\right\} \star\left\{h_{2}(n)\right\}\right] \quad \text { associativity } \\
& =\left[\{x(n)\} \star\left\{h_{1}(n)\right\}\right] \star\left\{h_{2}(n)\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \{x(n)\} \star\left[\left\{h_{1}(n)\right\}+\left\{h_{2}(n)\right\}\right] \quad \text { distributivity } \\
& =\{x(n)\} \star\left\{h_{1}(n)\right\}+\{x(n)\} \star\left\{h_{2}(n)\right\} .
\end{aligned}
$$

Stability of LTI Systems

An LTI system is stable if and only if

$$
\sum_{k=-\infty}^{\infty}|h(k)|<\infty
$$

Proof: (absolute summability \Rightarrow stability) Let the input $x(n)$ be bounded so that $|x(n)| \leq M_{x}<\infty, \forall n \in[-\infty, \infty]$. Then

$$
\begin{aligned}
|y(n)| & =\left|\sum_{k=-\infty}^{\infty} h(k) x(n-k)\right| \leq \sum_{k=-\infty}^{\infty}|h(k)||x(n-k)| \\
& \leq M_{x} \sum_{k=-\infty}^{\infty}|h(k)| \Rightarrow|y(n)|<\infty \text { if } \sum_{k=-\infty}^{\infty}|h(k)|<\infty .
\end{aligned}
$$

\Longrightarrow Now, it remains to prove that, if $\sum_{k=-\infty}^{\infty}|h(k)|=\infty$, then a bounded input can be found for which the output is not bounded. Consider

$$
\begin{gathered}
x(n)= \begin{cases}\frac{h^{*}(-n)}{\left|h^{*}(-n)\right|}, & h(n) \neq 0, \\
0, & h(n)=0\end{cases} \\
y(0)=\sum_{k=-\infty}^{\infty} h(k) x(-k)=\sum_{k=-\infty}^{\infty}|h(k)| \Longrightarrow
\end{gathered}
$$

if $\sum_{k=-\infty}^{\infty}|h(k)|=\infty$, the output sequence is unbounded.

Causality of LTI Systems

Definition. A system is causal if the output does not anticipate future values of the input, i.e. if the output at any time depends only on values of the input up to that time. Thus, a causal system is a system whose output $y(n)$ depends only on $\{\ldots, x(n-2), x(n-1), x(n)\}$.

Consequence: A system $y(n)=\mathcal{T}[x(n)]$ is causal if whenever $x_{1}(n)=x_{2}(n)$ for all $n \leq n_{0}$ then $y_{1}(n)=y_{2}(n)$ for all $n \leq n_{0}$, where $y_{1}(n)=\mathcal{T}\left[x_{1}(n)\right], \quad y_{2}(n)=\mathcal{T}\left[x_{2}(n)\right]$.

Comments:

- All real-time physical systems are causal, because time only moves forward. (Imagine that you own a noncausal system whose output depends on tomorrow's stock price.)
- Causality does not apply to spatially-varying signals. (We can move both left and right, up and down.)
- Causality does not apply to systems processing recorded signals (e.g. taped sports games vs. live broadcasts).

Proposition. An LTI system is causal if and only if its impulse response $h(n)=0$ for $n<0$.

Proof. From the definition of a causal system:

$$
y(n)=\sum_{k=-\infty}^{\infty} h(k) x(n-k)
$$

$$
=\sum_{k=0}^{\infty} h(k) x(n-k) .
$$

Obviously, this equation is valid if $\sum_{k=-\infty}^{-1} h(k) x(n-k)=0$ for all $x(n-k) \Longrightarrow h(n)=0$ for $n<0$. The other direction is obvious. \square

If $h(n) \neq 0$ for $n<0$, system is noncausal.

$$
\begin{aligned}
& h(n)=0, \quad n<-1, \Longrightarrow \\
& h(-1) \neq 0 \\
& y(n)=\sum_{k=0}^{\infty} h(k) x(n-k)+h(-1) x(n+1) \Longrightarrow
\end{aligned}
$$

$y(n)$ depends on $x(n+1) \Longrightarrow$ noncausal system!

Example:

An LTI system with

$$
h(n)=a^{n} u(n)=\left\{\begin{array}{ll}
a^{n}, & n \geq 0, \\
0, & n<0
\end{array} .\right.
$$

- Since $h(n)=0$ for $n<0$, the system is causal.
- To decide on stability, we must compute the sum

$$
S=\sum_{k=-\infty}^{\infty}|h(k)|=\sum_{k=0}^{\infty}|a|^{k}=\left\{\begin{array}{ll}
\frac{1}{1-|a|}, & |a|<1 \\
\infty, & |a| \geq 1
\end{array} .\right.
$$

Thus, the system is stable only for $|a|<1$.

Linear Constant-Coefficient Difference (LCCD) Equations

Consider LTI systems satisfying

$$
\sum_{k=0}^{N} a_{k} y(n-k)=\sum_{k=0}^{M} b_{k} x(n-k) \quad \text { ARMA }
$$

Particular cases:

$$
\begin{aligned}
& y(n)=\sum_{k=0}^{M} b_{k} x(n-k), \quad \mathrm{MA} \\
& \sum_{k=0}^{N} a_{k} y(n-k)=x(n) \quad \text { AR. }
\end{aligned}
$$

Example:

$$
\begin{gathered}
y(n)=\sum_{k=-\infty}^{n} x(k) \text { accumulator } \\
y(n)-y(n-1)=\sum_{k=-\infty}^{n} x(k)-\sum_{k=-\infty}^{n-1} x(k)=x(n) .
\end{gathered}
$$

Property: MA systems are bounded-input bounded-output (BIBO) stable, i.e.

$$
|y(n)|=\left|\sum_{k=0}^{M} b_{k} x(n-k)\right| \leq \sum_{k=0}^{M}\left|b_{k}\right| \cdot|x(n-k)|<\infty
$$

for any bounded input $|x(n)|<\infty$ and coefficient sequence $\left|b_{n}\right|<\infty$.

Remark: AR systems may be unstable. For example, the system

$$
y(n)=a y(n-1)+x(n)
$$

is unstable for $a>1$, because $y(n)$ is generally unbounded for bounded $x(n)$.

Property: MA systems have finite impulse response (FIR), whereas AR systems have infinite impulse response (IIR):

$$
h_{\mathrm{MA}}(n)= \begin{cases}0, & n<0 \\ b_{n}, & 0 \leq n \leq M \\ 0, & n>M\end{cases}
$$

"Proof" for AR systems: $y(n)$ depends on $y(n-k), k=$ $1,2, \ldots \Rightarrow y(n)$ depends on $x(n-k), k=0, \ldots, \infty \Rightarrow$ the impulse response $h_{\mathrm{AR}}(n)$ is infinite, i.e. is in general nonzero for all $n>0$.

Suppose that, for a given input $x(n)$, we have found one particular output sequence $y_{\mathrm{p}}(n)$ so that a LCCD equation is satisfied. Then, the same equation with the same input is satisfied by any output of the form

$$
y(n)=y_{\mathrm{p}}(n)+y_{\mathrm{h}}(n)
$$

where $y_{\mathrm{h}}(n)$ is any solution to the LCCD equation with zero input $x(n)=0$.

Remark: $y_{\mathrm{p}}(n)$ and $y_{\mathrm{h}}(n)$ are referred to as the particular and homogeneous solutions, respectively.

Proof. From

$$
\begin{aligned}
& \sum_{k=0}^{N} a_{k} y_{\mathrm{p}}(n-k)=\sum_{k=0}^{N} b_{k} x(n-k) \\
& \sum_{k=0}^{N} a_{k} y_{\mathrm{h}}(n-k)=0
\end{aligned}
$$

it follows

$$
\sum_{k=0}^{N} a_{k} y(n-k)=\sum_{k=0}^{N} b_{k} x(n-k)
$$

where $y(n)=y_{\mathrm{p}}(n)+y_{\mathrm{h}}(n) . \quad \square$

Property: A LCCD equation does not provide a unique specification of the output for a given input. Auxiliary information or conditions are required to specify uniquely the output for a given input.

Example: Let auxiliary information be in the form of N sequential output values. Then

- later values can be obtained by rearranging LCCD equation as a recursive relation running forward in n,
- prior values can be obtained by rearranging LCCD equation as a recursive relation running backward in n.

LCCD equations as recursive procedures:

$$
y(n)=\sum_{k=0}^{M} \frac{b_{k}}{a_{0}} x(n-k)-\sum_{k=1}^{N} \frac{a_{k}}{a_{0}} y(n-k) \quad \text { forward },
$$

$$
y(n-N)=\sum_{k=0}^{M} \frac{b_{k}}{a_{N}} x(n-k)-\sum_{k=0}^{N-1} \frac{a_{k}}{a_{N}} y(n-k) \quad \text { backward. }
$$

Example: First-order AR system $y(n)=a y(n-1)+x(n)$ with input $x(n)=b \delta(n-1)$ and the auxiliary condition $y(0)=y_{0}$.

Forward recursion:

$$
\begin{aligned}
y(1) & =a y_{0}+b \\
y(2) & =a y(1)+0 \\
& =a\left(a y_{0}+b\right)=a^{2} y_{0}+a b \\
y(3) & =a\left(a^{2} y_{0}+a b\right)=a^{3} y_{0}+a^{2} b \\
& \cdots \\
y(n) & =a^{n} y_{0}+a^{n-1} b
\end{aligned}
$$

Observe that $y(n-1)=a^{-1}[y(n)-x(n)] \Longrightarrow$

Backward recursion:

$$
\begin{aligned}
y(-1) & =a^{-1}\left(y_{0}-0\right)=a^{-1} y_{0} \\
y(-2) & =a^{-2} y_{0} \\
y(-3) & =a^{-3} y_{0} \\
& \cdots \\
y(-n) & =a^{-n} y_{0}
\end{aligned}
$$

Is this system LTI?
Lemma. A linear system requires that the output be zero for all time when the input is zero for all time.

Proof. Represent zero input as $0 \cdot x(n)$, where $x(n)$ is an
arbitrary (nonzero) signal. Then

$$
y(n)=\mathcal{T}[0 \cdot x(n)]=0 \cdot \mathcal{T}[x(n)]=0
$$

(Back to Example) Choosing $b=0$, we have $x(n)=x(-n)=$ 0 , but $y(n)$ and $y(-n)$ will be nonzero if $a \neq 0$ and $y_{0} \neq 0$. Using the above lemma, it follows that the system is not linear!

For an arbitrary n, we can write the system's output as:

$$
y(n)=a^{n} y_{0}+a^{n-1} b u(n-1)
$$

The shift of the input by n_{0} samples, $\widetilde{x}(n)=x\left(n-n_{0}\right)=$ $b \delta\left(n-n_{0}-1\right)$, gives

$$
\widetilde{y}(n)=a^{n} y_{0}+a^{n-n_{0}-1} b u\left(n-n_{0}-1\right) \neq y\left(n-n_{0}\right)
$$

The system is not time-invariant!
Example: First-order AR system $y(n)=a y(n-1)+x(n)$ with input $x(n)=b \delta(n-1)$ and the auxiliary condition $y(0)=0$.

Recursion:

$$
\begin{aligned}
y(-1) & =0 \\
y(0) & =0
\end{aligned}
$$

$$
\begin{aligned}
y(1) & =a \cdot 0+b=b \\
y(2) & =a b \\
& \cdots \\
y(n) & =a^{n-1} b
\end{aligned}
$$

which can be rewritten as

$$
y(n)=a^{n-1} b u(n-1), \quad \forall n
$$

It is easy to prove that now, the system will be LTI.
Linearity and time-invariance depend on auxiliary conditions!

