Frequency-Domain Analysis

Fourier Series

Consider a continuous complex signal
x(t) € [=T/2,T/2].

Represent x(t) using an arbitrary orthonormal basis ¢, ():

o

z(t) = Z anpn (1)

Orthonormality condition:
T/2
—/ L(t)dt = d(n — k).
T/2

Multiplying the above expansion with 7 (¢) and integrating
over the interval, we obtain

T/2 | T2 >
- )dt = — Qo ()7 (T)dt
L 7)o, 2 0o DD
00 1 [T/2
=Y a (T / ¢n<t>¢z<t>dt)
n=—oo —T/2
= Z a,d(n — k) = ag
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Thus, the coefficients of expansion are given by
T/2
1 / dt.
T/2
Proposition. The functions ¢,(t) = exp(j2mnt/T) are
orthonormal at the interval |[—T/2,T/2].

Proof.
| T2 * T/2 G,
B a
_T/2 T/2
Sln[ﬂ'( — k)]
k) TR
[

Thus, we can take exponential functions ¢,(t) =
exp(j2mnt/T) as orthonormal basis = we obtain Fourier
series.

Fourier series for a periodic signal x(t) = x(t + T):

x(t) = Z X, el Tt

n=—oo

T/2
X, = — / Tt
T/2
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Fourier coefficients can be viewed as a signal spectrum:
X, ~ X($2,), where ,=— =

Fourier series can be applied to analyze signal spectrum! Also,
this interpretation implies that periodic signals have discrete

spectrum.

Example: Periodic sequence of rectangles:

T/2 1 ’7'/2

1 .9271n - 27T
X, = —/ x(t)e_ﬂTtdt:— Ae ™It gt
T J_ 7/ T J 72
AT sin(mns
— T ( TT) real coefficients.
T 7TTLT
x(1)
A
-z 33 £ ‘
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Remarks:
e In general, Fourier coefficients are complex-valued,
e For real signals, X_,, = X.

e Alternative expressions exist for trigonometric Fourier series,
exploiting summation of sine and cosine functions.
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Convergence of Fourier Series
Dirichlet conditions:

Condition 1. x(t) 1s absolutely integrable over one period, 1. €.

r

fl Flehdf < =
And A7
Condition 2. In a finite time interval,
x(¢) has a finitenumber

=]

of maxima and minima. vl |l r

Ex. An example that violates li_ o | | |
Condition 2. ' = II T | L
i T i I | | |

Fidl = =in [ = I 0« f=1 | I‘-I | "l i_-!

And -

Condition 3. In a finite time interval, x(7) has only a finite
number of discontinuities.

Ex. An example that violates

Condition 3, L. L L i‘

Dirichlet conditions are met for most of the signals encountered
in the real world.

Still, convergence has some interesting characteristics:

N
()= Y Xl T
n=—N

As N — oo, xn(t) exhibits Gibbs' phenomenon at points of
discontinuity. Under the Dirichlet conditions:
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e The Fourier series = x(t) at points where x(t) is continuous,

e The Fourier series = “midpoint” at points of discontinuity.

Demo: Fourier series for continuous-time square wave (Gibbs

phenomenon).

http://www. jhu.edu/"signals/fourier2/index.html.
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http://www.jhu.edu/~signals/fourier2/index.html

Review of Continuous-time Fourier Transform

What about Fourier representations of nonperiodic continuous-
time signals?

Assuming a finite-energy signal and T' — oo in the Fouries
series, we get limp_,, X,, = 0.

x(t)

. = 4 A | *%n In the limit as 7— oo,

-‘- the Fourier coefficients
tend to zero and vanish

sl la
I

Trick: To preserve the Fourier coefficients from disappearing
as 1" — oo, introduce

i T/2 27N
X, =TX, = / x(t)e 7T tdt.
_T/2
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Transition to Fourier transform:

~

X(2) = Ilm X,
T—o00
T/2 -2Tn
= lim z(t)e 7T tdt

T'—oo J_1/2

= / x(t)e 7 dt,

— 00

where the “discrete” frequency 27n /T becomes the continuous
frequency {2.

Transition to inverse Fourier transform:

~

> LN > X’I’L s Z2TTN

ot) = Jim 3T Xnel = lim Y SR
1 > - o 2N
= — X ()t dn N=" 0N=""

o | (2)e?*d? <= d T T
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Continuous-time Fourier transform (CTFT):

X(2) = /OO x(t)e 7 dt,

1 oo
2T

8
=
||
|
>

(2)e?td .

— OO

Example: Finite-energy rectangular signal:

X(2) = /OO r(t)e 7t dt

— 00

T/2 .

= / Ae 79 dt
—7/2

sin(£27/2)

AT 71/2

real spectrum.
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xAZL)
A
- O s =3 z
= XE -
AT
v T e
_ 2T 27t 47T

Remarks:

e |n general, Fourier spectrum is complex-valued,

e For real signals, X(—£2) = X*(12).

EE 524, Fall 2004, # 3 10



Dirac Delta Function

Definition:

5(75):{8?’ i;g / S(t)dt = 1.

— o0
Do not confuse continuous-time §(¢) with discrete-time d(n)!

Sifting property:

/ T 08— )t = £(r).

The spectrum of §(t — tp):

X(2) = /_OO x(t)e ™I 4dt

= / 6(t —to)e 7 tdt

— OO

= /o,

Delta function in time domain:

EE 524, Fall 2004, # 3
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Delta function in frequency domain:

1 ©.¢)

6() = — e I qt = {

For signal

we have

X(2) = /OO x(t)e 7t dt

— 00

A/OO e~ I(Q2—=)t 1y

— 0

= A275(0— ).
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Harmonic Fourier Pairs

Delta function in frequency domain:

et 21 §(02 — 1),
cos(fot) — w[6(2 — ) + 6(82 + )],

sin(2pt) gwn—mﬁ—&g+%n
x(t) = cos @) X
1 ﬂ:T T(ﬂ:)
? S0 0 SW st
: _ 2R '
— i
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Parseval’'s Theorem for CTFT

/m\<>|dt : OO| X(02))2d0

C oo 2m

1 ©.¢)

— X (2)|%df2
3| X

{ / / )e (= T)dtdf}dﬂ
_ / / { / ejQ(T_t)dQ}dth
21 J_ oo

§(T—t)
_ / (8 2dt.
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Discrete-time Fourier Transform (DTFT)
Represent continuous signal x(t) via discrete sequence z(n):

o

z(t)= > w(n)d(t —nT).

n=——oo

Substituting this equation into the CTFT formula, we obtain:

X (1) :/ Z )8(t — nT)e 72 dt

TL_OO

o

Z x(n) / 6(t — nT)e It

n=—o00 —0o0

= Z x(n)e T,

n=—oo

Switch to the discrete-time frequency, i.e. use w = 27

oo

X(w) = Z z(n)e 7em,

n=—oo

X (w) is periodic with period 27:

X(w) = Z r(n)e W g 2™
n=—oo 1
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= Z z(n)e I WTEn — X (0 4 27).

nN=——=oo

Trick: in computing inverse DTFT, use only one period of

X (w):
X(w) = Y ax(n)e /" DTFT,
1 [" :
r(n) = oy X(w)e?*"dw Inverse DTFT.
T —Tr
Inverse DTFT:
Proof.
1 [" ~
r(n) = — X (w)e?“"dw
2w J_ -
LM 5 jw(n—m)
= 5 Z x(m)e dw
- 1 " w(n—m)
= Z x(m) — e’ dw = x(n).
m=—o00 \27‘- T _

5(ntm)

[
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Fourier Series vs. DTFT

x(t) = Z X, el T, Xn:—/ az(t)e_Jthdt FS

n=-—o00 T —T/2
> . 1 [ .
X(w) = Z x(n)e ¥ x(n) = oy X(w)e!*"dw DTFT

Observation: Replacing, in Fourier Series

z(t) — X(w),
X, — xz(n),
t — —w,
1T — 2w,

we obtain DTFT!

An important conclusion: DTFT is equivalent to Fourier
series but applied to the “opposite’ domain. In Fourier
series, a periodic continuous signal is represented as a sum of
exponentials weighted by discrete Fourier (spectral) coefficients.
In DTFT, a periodic continuous spectrum is represented as a
sum of exponentials, weighted by discrete signal values.
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Remarks:

e DTFT can be derived directly from the Fourier series,
e All Fourier series results can be applied to DTFT

e Duality between time and frequency domains.

EE 524, Fall 2004, # 3
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Parseval’s Theorem for DTFT

G 2 1 " 2
> fam)f =5 [ 1X(w)Pdo

1 T
2w J_ .

:%/7T i i z(n)z*(m)e 7« m=m)dy

n=—oo Mm=—aoo

x(n)x*(m) L/ e~ Iw(n=m) gy,
> 2 o

NnN=—0o0 Mm=—o0 T

| X (w)]?dw

7

5(ntm)
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When Does DTFT Exist (i.e. | X (w)| < 00)?

Sufficient condition:

Z lz(n)| < oc.
X)) = | > (e "

< Y ()| [

— Z lz(n)| < oo.

Example: Finite-energy rectangular signal:

N/2 N/2
X(w)| = Y Aer=A4 Y eIn
n=—N/2 n=—N/2
in (Nl
— AW 1))

(N + 1) sin(%)

EE 524, Fall 2004, # 3 20



sin(M-w)
(N +1)%

J

~ A(N+1) for w <

\

well-known function

Both functions look very similar in their “mainlobe” domain.

x(rz)

T

O 7z
X ()

__ 27T 27T 47T
N 1+—1 N+=1 ~N+1

EE 524, Fall 2004, # 3
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DTFT — Convolution Theorem
If X(w) = F{z(n)} and H(w) = F{h(n)} and

y(n) =Y w(k)h(n — k) = {z(n)} x {h(n)}

then Y(w) = F{y(n)} = X(w)H (w).

Y(w) = Flym)}= ) { > az(k)h(u)}ef’m

n——o0 k=—o0 m

- £ | 5 o]

m=—00 k=—o00

|2 o ]

= X(w)H(w).

Windowing theorem: If X(w) = Fl{z(n)}, W(w) =
F{w(n)}, and y(n) = z(n)w(n), then

Y(w) =F{y(n / X1 M) Xo(w— A
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Frequency-Domain Characteristics
of LTI Systems

Recall impulse response h(n) of an LTI system:

> h(k)z(n — k).

k=—o0

Consider input sequence x(n) = e/“", —co< n < 0.

Z h(k)ejw(n—k) jwn Z h jWkZijnH(W).

k=—o0 k=—o0

H(w)

7

The complex function
> h(k)e 7wk
k=—o0

is called the frequency response or the transfer function of the
system.

e Impulse response and transfer function represent a DTFT
pair = H(w) is a periodic function.
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e Transfer function shows how different input frequency
components are changed (e.g. attenuated) at system output.

e V(w) = X(w)H(w) implies that an LTI system cannot
generate any new frequencies, i.e. it can only amplify
or reduce/remove frequency components of the input.
Conversely, if a system generates new frequencies, then
it is not LTI!

e Systems that are not LTI do not have a meaningful frequency
response.
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Elements of Sampling Theory
Preliminaries

How are CTFT and Fourier series related for periodic signals?
Consider a continuous-time signal z.(t) with CTFT

X(2) =2w6(02 — £y).
Then

o(l) = / 2802 — O)ed it = eIt

— OO

We know: periodic signal has line equispaced spectrum. Let
X (f2) be a linear combination of impulses equally spaced in
frequency:

X(2)= > 2wX,5(2—n). (1)

Using inverse CTFT, i.e. applying it to each term in the sum,
we obtain:

w(t) = > — / 2 X0 (02 — niy)e? P2
— Z X, el ot Fourier series!
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CTFT of a periodic signal with Fourier-series coefficients { X, }
can be interpreted as a train of impulses occurring at the
harmonically-related frequencies with the weights {27 X, }.

How about the following signal (periodic impulse train), defined
as

s(t) = i o(t —nT)?

n——oo

Note: The above periodic impulse train does not satisfy
the Dirichlet conditions. Hence, its CTFT is introduced and
understood in a limiting sense.

Here are couple of useful expressions for the periodic impulse
train:

i ot —kT) = % i eI (2 /T)t

k=—o0c0 n=—oo
P i~ 2Tn > :
— - _ —3QkT
T n__OO5<Q T ) — k_g_ e .

Also, the Fourier transform of a periodic impulse train is a
periodic impulse train:

i 5t —kT) o 2% i 5(9—2%”).

k=—00 n=—oo
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v Scw t
SRERSEEEREEEN

The impulse train s(t) = > ,____0(t—kT) is a periodic signal
with period 17" = we can apply Fourier series and find the
Fourier coefficients:

1 [T/ 2rm 1
S, = —/ S(t)e T dE = —.
T J 7/ T
Hence
1 —— .
_ L n(27/T)t
s(t) = T n;oo e’ .
Also
S(02) = / s(tye 7Mdt = Y e IO
- k=—o00
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From (1), we obtain

EE 524, Fall 2004, # 3
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The Sampling Theorem

Introduce the “modulated” signal

zs(t) = wc(t)s(t) = wo(t) Y 6(t —nT).

n——~oo

Since z.(t) 6(t — to) = x(to) 6(t — to), we obtain

Using this “modulated” signal, we describe the sampling
operation.
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X1)
/\/\\/-\ from analog to

digital signal using

¢ Impulse train

s(t)
T
k-l{‘ “}zé‘(t) A ¥ |
il H‘H | |
iaiiiaatiin
rs(t) = ch(t)s(t):xc(t).% i pIn(2m/T)t

n=——oo

= LY g (t)emCun
T

n=——~oo

It turns out that the problem is much easier to understand
Hence, we compute the Fourier

in the frequency domain.

transform of x4(t).

EE 524, Fall 2004, # 3
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we have from the frequency-shift theorem:

zo(t) eI/ XC(Q — nQ%)

Hence, the Fourier transform of the sum is

X(2) =+ X (2-232).

Recall that:

vs(t) = >  a(nT)o(t—nT)= >  x(n)s(t—nT).

n=—oo n=—oo

Taking the FT of the above expression, we obtain another
expression for X ({2):

X(02) = Z x(n) / 6(t —nT)e 7t dt
— —JONT _
= Z x(n)e = X(w) P
n=—o0 DTFT{a(n)}

By sampling, we throw out a lot of information: all values of
x(t) between the sampling points are lost.
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Question: Under which conditions can we reconstruct the

original continuous-time signal x(t) from the sampled signal
xs(t)?

Theorem. Suppose x(t) is bandlimited, so that X (§2) = 0
for |£2| > (2. Then x(t) is uniquely determined by its samples

1z(nT)) = {z(n); if

), = 2% > 2{\; = the Nyquist rate.
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Frequency-Domain Effect for Nyquist Sampling

(21T = 20)
1 X&)
—r2,, 0\% L.
Sy
jﬂ: : ZTTE S
_ <t =L p
T Bl t
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Frequency-domain Effect for Sampling Faster
than Nyquist (27 /T > 202\)

1 X(52)
\
—n,, 0 s, S
Souy
I ! I
_27T 27 E -
L 1 Xml T
-, 0 5, 2T S
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Frequency-domain Effect for Sampling Slower
than Nyquist (27 /T < 202\)

1)2@
/\
—2, 0 %2, L
SEa
N
_?7”30 % JT

5 1 .7 7 7=

note aliasing!!!
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Elements of Sampling Theory (cont.)

Introduce a lowpass filtering operation. The spectrum of the
filtered signal:
X¢(£2) = Hpp(£2) X(92)

where Hyp({2) = ideal lowpass filter:

T7 _QC S Q S QC)
0, otherwise

Y

Hue() = {

with the cut-off frequency (2. How to reconstruct a
bandlimited signal from its samples in the time domain?

Having a signal sampled at a rate higher than the Nyquist rate
and infinite number of its discrete values, the signal can be
exactly recovered as

i x(msin[w(t —nT)/T]

(t = nT)/T ideal interpolation formula.

xf(t) =

n=—oo

Proof. Start from: X¢(2) = X (£2)Hrp({2). In time domain

{zs(t)} * {hLp(?)}
{ > xc(nT)d(tnT)} *« {hrp(t)}

n=—oo

in(t)
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/ Z x(nT)6(T — nT)hrp(t — 7)dr

n=——oo

— Z z(n)hip(t — nT).

n=—oo

|ldeal transfer function:

T, =< N <F,
0, otherW|se

Y

Hue() = {

|ldeal impulse response:

sin(zt/T) |

hp(t) = it/ T

Now, insert hrp(t) into the equation for x¢(t). O
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Representations of Narrowband Signals

Narrowband signals have small bandwidth compared to the
band center (carrier) frequency.

B < Fpy.

r.(t) = a(t) cos2mFyt + 6(t) |
amplitude % phase

modulation modulation
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The above representation can be used to describe any signal,
but it makes sense only if a(t) and 6(t) vary slowly compared
with cos(2m Fyt), or, equivalently, B < Fy.

e Complex-envelope and

e Quadrature-component

representations of narrowband signals.

Complex-envelope representation:

zo(t) = Re{a(t)exp(j[fot +0(1)])}
= Re{a(t) exp[j0(?)] exp(j{2t)}.

Fe(t)

The complex-valued signal z.(t) contains both the amplitude
and phase variations of x.(t), and is hence referred to as the
complex envelope of the narrowband signal x.(?).
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Quadrature-component representation:

rc(t) = a(t) cos (1) cos(f2ot) — a(t) sin O(t) sin(Lt).

zer(t) Teo (1)

zc1(t) and x.q(t) are termed the in-phase and quadrature
components of narrowband signal z.(t), respectively.

Note that
Te(t) = xer(t) + jreq(t).
If we “blindly” apply the Nyquist theorem, we would choose

B
FN = 2(F0 + 5) ~ 2F0 for B K Fo.

However, since the effective bandwidth of z.(t) [and x.(?)] is
B/2, the optimal rate should be B!

Recall

z.(t) = a(t)cos|2mFyt + 0(1)]

alt) exp{j {2t + ()]} + exp{—j[{ht 4 0(1)]}
2

a(t)exp|y0(t , a(t)exp|—760(t ,
_a(?) 5[3 (2)] exp(jt) + (t) p2[ jO(t)] exp(—j Q)
5e(t) 572 (1)
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and hence

~ ~

Xe(£2) = 5[ Xc(£2 = f2) + X (=62 = {)],

1
2

implying that z. is a baseband complex-valued
(occupying the band [—B/2, B/2]):

XY

>

- B/, B/.z_ F

B

N _ (n\sin[rB(t —n/B)]
Tc(t) = Z xc( ) mB(t —n/B)

n=—oo

EE 524, Fall 2004, # 3
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r.(t) = Re{xz.(t)exp(j2nFpt)}
= _ /n\sin[rB(t —n/B)] ,
= Re { nzoo e (E) wB(t —n/B) exp(] 27TF0t)}

{ _Z ( )eXp{J (n/B)+2wFot]}Siri;i(t_—n %1)3)]}

Z ( ) cos|2m Fpt + Q(n/B)]SH;[;Z(i;T/Lé?)]

= f: [a:d (%) cos(2mFyt) — xcq (%) Sin(QWFot)}

n=—oo

sin|rB(t — n/B)]
nB(t—n/B)
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Z Transform

o0

X(z)=Z{x(n)} = Z x(n)z™".

n=—oo

Relationship between the z transform and DTFT: substitute
z =rel¥,

X(Z)lz:rejw — Z x(n)(,rejw)—n
= Y {a(myrmyeien

= Flz(n)r "} =

The z transform of an arbitrary sequence x(n) is equivalent to
DTFT of the exponentially weighted sequence x(n)r—".

If » =1 then
X(2)|;zeio = X(w) = Flz(n)} =

DTFT corresponds to z transform with |z| = 1.

Notation: Observe that X (/%) = X (w).
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The z transform reduces to the DTFT for values of z on the
unit circle:

unit circle Im

- -

Re

Question: When does the z transform converge?

Region of convergence (ROC) = range of values of z for which
| X (2)] < 0.

Example: The z transform of the signal z(n) = a™u(n) is

X(z) = Z a"u(n)z" " = Z(az_l)”
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For convergence, we require that

oo
Z laz™ ™ < oo,
n=0

which holds if [az~1| < 1 or, equivalently, |z| > |a|. Note:

1
X(2) = 1 —az"1

Example: The z transform of the signal

n O, nZO,
z(n) = —a u(—n—l):{ o<

—1 o) 00
X(z) = — E a"zT" = — E a """ = — g (a=t2)"
n=-—o00 n=1 n=1
a tz 1
- — — = T = same as previous ex.
l—a"2z 1—az"

But, ROC is now |z| < |a.

Remark: a discrete-time signal z(n) is uniquely determined by
its z transform X (z) and its ROC.
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ROC Properties

e The ROC of X(z) consists of a ring in the z plane centered
about the origin,

e The ROC does not contain any poles,

e If x(n) is of finite duration, then the ROC is the entire 2z
plane, except possibly z = 0 and/or z = oo,

e If x(n) is a right-sided sequence, and if the circle |z| = rg
is in the ROC, then all finite values of z for which |z| > 7
will also be in the ROC (need to check z = c0),

o If z(n) is a left-sided sequence, and if the circle |z| = rq is
in the ROC, then all finite values of z for which 0 < |z| < 7
will also be in the ROC (need to check z = 0),

e If x(n) is a two-sided sequence, and if the circle |z| = rg is
in the ROC, then the ROC will be a ring in the z plane that
includes the circle |z| = ro (we can represent this sequence
as right-sided sequence + left-sided sequence).
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Z Transform (cont.)

Inverse Z transform:

Recall that

X (z) e Flx[n|r "},

Applying the inverse DTFT, we get

zn] = r"F HX(rev)}
1 [ -
= 7. — X (re?*)e?“" dw
2 J_ .
- L 7rX( e?“) (re?“)"™ dw
I
1

= — d X(2)2" tdr —— dz=jre’“dw.
27

Comments:

e ¢ ---dz denotes integration around a closed circular contour
centered at the origin and having radius r,

e r must be chosen so that the contour of integration |z| =7
belongs to the ROC,

e contour integration in complex plane may be a complicated
task; simpler alternative procedures exist for obtaining a
sequence from a Z transform.
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LTI system analysis:

y(n) ={h(n)} x{z(n)} < Y(z)=H(z)X(z)
Results:

e A discrete-time LTI system is causal if and only if the ROC
of its transfer function is the exterior of a circle including
infinity.

e A discrete-time LTI system is stable if and only if the ROC
of its transfer function includes the unit circle |z| = 1.
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Rational Z transforms

Recall LCCD equations of ARMA processes

N

Zaky n—k Zbkazn—

k=0

Taking z-transforms of both sides, we get

> Zawy(n—k)} =) btuZ{z(n—k)},
k=0 k=0

yielding
N

Y(2) Z arz " = X(2) Z bz "

k=0
Hence, the transfer function of an ARMA process is

_Y(2) _ Spobiz
X(z) ij:o apzk
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