
Frequency-Domain Analysis

Fourier Series

Consider a continuous complex signal

x(t) ∈ [−T/2, T/2].

Represent x(t) using an arbitrary orthonormal basis ϕn(t):

x(t) =
∞∑

n=−∞
αnϕn(t)

Orthonormality condition:

1
T

∫ T/2

−T/2

ϕn(t)ϕ∗k(t)dt = δ(n− k).

Multiplying the above expansion with ϕ∗k(t) and integrating
over the interval, we obtain

1
T

∫ T/2

−T/2

x(t)ϕ∗k(t)dt =
1
T

∫ T/2

−T/2

∞∑
n=−∞

αnϕn(t)ϕ∗k(t)dt

=
∞∑

n=−∞
αn

(
1
T

∫ T/2

−T/2

ϕn(t)ϕ∗k(t)dt

)

=
∞∑

n=−∞
αnδ(n− k) = αk.
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Thus, the coefficients of expansion are given by

αk =
1
T

∫ T/2

−T/2

x(t)ϕ∗k(t)dt.

Proposition. The functions ϕn(t) = exp(j2πnt/T ) are
orthonormal at the interval [−T/2, T/2].

Proof.

1
T

∫ T/2

−T/2

ϕn(t)ϕ∗k(t)dt =
1
T

∫ T/2

−T/2

ej
2π(n−k)

T tdt

=
sin[π(n− k)]

π(n− k)
= δ(n− k).

2

Thus, we can take exponential functions ϕn(t) =
exp(j2πnt/T ) as orthonormal basis =⇒ we obtain Fourier
series.

Fourier series for a periodic signal x(t) = x(t + T ):

x(t) =
∞∑

n=−∞
Xnej2πn

T t

Xn =
1
T

∫ T/2

−T/2

x(t)e−j2πn
T tdt.
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Fourier coefficients can be viewed as a signal spectrum:

Xn ∼ X(Ωn), where Ωn =
2πn

T
⇒

Fourier series can be applied to analyze signal spectrum! Also,
this interpretation implies that periodic signals have discrete
spectrum.

Example: Periodic sequence of rectangles:

Xn =
1
T

∫ T/2

−T/2

x(t)e−j2πn
T tdt =

1
T

∫ τ/2

−τ/2

Ae−j2πn
T tdt

=
Aτ

T
·
sin(πn τ

T )
πn τ

T

real coefficients.
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Remarks:

• In general, Fourier coefficients are complex-valued,

• For real signals, X−n = X∗
n.

• Alternative expressions exist for trigonometric Fourier series,
exploiting summation of sine and cosine functions.
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Convergence of Fourier Series

Dirichlet conditions:

Dirichlet conditions are met for most of the signals encountered
in the real world.

Still, convergence has some interesting characteristics:

xN(t) =
N∑

n=−N

Xnej2πn
T t.

As N → ∞, xN(t) exhibits Gibbs’ phenomenon at points of
discontinuity. Under the Dirichlet conditions:
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• The Fourier series = x(t) at points where x(t) is continuous,

• The Fourier series = “midpoint” at points of discontinuity.

Demo: Fourier series for continuous-time square wave (Gibbs’
phenomenon).

http://www.jhu.edu/~signals/fourier2/index.html.
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Review of Continuous-time Fourier Transform

What about Fourier representations of nonperiodic continuous-
time signals?

Assuming a finite-energy signal and T → ∞ in the Fouries
series, we get limT→∞Xn = 0.

Trick: To preserve the Fourier coefficients from disappearing
as T →∞, introduce

X̃n = TXn =
∫ T/2

−T/2

x(t)e−j2πn
T tdt.
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Transition to Fourier transform:

X(Ω) = lim
T→∞

X̃n

= lim
T→∞

∫ T/2

−T/2

x(t)e−j2πn
T tdt

=
∫ ∞

−∞
x(t)e−jΩtdt,

where the “discrete” frequency 2πn/T becomes the continuous
frequency Ω .

Transition to inverse Fourier transform:

x(t) = lim
T→∞

∞∑
n=−∞

Xnej2πn
T t = lim

T→∞

∞∑
n=−∞

X̃n

T
ej2πn

T t

=
1
2π

∫ ∞

−∞
X(Ω)ejΩtdΩ ⇐ dΩ =

2π

T
, Ω =

2πn

T
.
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Continuous-time Fourier transform (CTFT):

X(Ω) =
∫ ∞

−∞
x(t)e−jΩtdt,

x(t) =
1
2π

∫ ∞

−∞
X(Ω)ejΩtdΩ .

Example: Finite-energy rectangular signal:

X(Ω) =
∫ ∞

−∞
x(t)e−jΩtdt

=
∫ τ/2

−τ/2

Ae−jΩtdt

= Aτ
sin(Ωτ/2)

Ωτ/2
real spectrum.
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Remarks:

• In general, Fourier spectrum is complex-valued,

• For real signals, X(−Ω) = X∗(Ω).
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Dirac Delta Function

Definition:

δ(t) =
{
∞, t = 0,
0, t 6= 0 ,

∫ ∞

−∞
δ(t)dt = 1.

Do not confuse continuous-time δ(t) with discrete-time δ(n)!

Sifting property:∫ ∞

−∞
f(t)δ(t− τ)dt = f(τ).

The spectrum of δ(t− t0):

X(Ω) =
∫ ∞

−∞
x(t)e−jΩtdt

=
∫ ∞

−∞
δ(t− t0)e−jΩtdt

= e−jΩt0.

Delta function in time domain:

δ(t) =
1
2π

∫ ∞

−∞
ejΩtdΩ .
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Delta function in frequency domain:

δ(Ω) =
1
2π

∫ ∞

−∞
e−jΩtdt =

{
∞, Ω = 0,
0, Ω 6= 0 .

For signal
x(t) = AejΩ0t

we have

X(Ω) =
∫ ∞

−∞
x(t)e−jΩtdt

= A

∫ ∞

−∞
e−j(Ω−Ω0)tdt

= A 2π δ(Ω − Ω0).
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Harmonic Fourier Pairs

Delta function in frequency domain:

ejΩ0t ↔ 2π δ(Ω − Ω0),

cos(Ω0t) ↔ π [δ(Ω − Ω0) + δ(Ω + Ω0)],

sin(Ω0t) ↔ π

j
[δ(Ω − Ω0)− δ(Ω + Ω0)].

EE 524, Fall 2004, # 3 13



Parseval’s Theorem for CTFT

∫ ∞

−∞
|x(t)|2dt =

1
2π

∫ ∞

−∞
|X(Ω)|2dΩ

1
2π

∫ ∞

−∞
|X(Ω)|2dΩ

=
1
2π

∫ ∞

−∞

{∫ ∞

−∞

∫ ∞

−∞
x(t)x∗(τ)e−jΩ(t−τ)dtdτ

}
dΩ

=
∫ ∞

−∞

∫ ∞

−∞
x(t)x∗(τ)

{
1
2π

∫ ∞

−∞
ejΩ(τ−t)dΩ

}
︸ ︷︷ ︸

δ(τ−t)

dtdτ

=
∫ ∞

−∞
|x(t)|2dt.
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Discrete-time Fourier Transform (DTFT)

Represent continuous signal x(t) via discrete sequence x(n):

x(t) =
∞∑

n=−∞
x(n)δ(t− nT ).

Substituting this equation into the CTFT formula, we obtain:

X(Ω) =
∫ ∞

−∞

∞∑
n=−∞

x(n)δ(t− nT )e−jΩtdt

=
∞∑

n=−∞
x(n)

∫ ∞

−∞
δ(t− nT )e−jΩtdt

=
∞∑

n=−∞
x(n)e−jΩnT .

Switch to the discrete-time frequency, i.e. use ω = ΩT :

X(ω) =
∞∑

n=−∞
x(n)e−jωn.

X(ω) is periodic with period 2π:

X(ω) =
∞∑

n=−∞
x(n)e−jωn e−j2πn︸ ︷︷ ︸

1
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=
∞∑

n=−∞
x(n)e−j(ω+2π)n = X(ω + 2π).

Trick: in computing inverse DTFT, use only one period of
X(ω):

X(ω) =
∞∑

n=−∞
x(n)e−jωn DTFT,

x(n) =
1
2π

∫ π

−π

X(ω)ejωndω Inverse DTFT.

Inverse DTFT:
Proof.

x(n) =
1
2π

∫ π

−π

X(ω)ejωndω

=
1
2π

∫ π

−π

∞∑
m=−∞

x(m)ejω(n−m)dω

=
∞∑

m=−∞
x(m)

1
2π

∫ π

−π

ejω(n−m)dω︸ ︷︷ ︸
δ(n−m)

= x(n).

2
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Fourier Series vs. DTFT

x(t) =
∞∑

n=−∞
Xnej2πn

T t, Xn =
1
T

∫ T/2

−T/2

x(t)e−j2πn
T tdt FS

X(ω) =
∞∑

n=−∞
x(n)e−jωn, x(n) =

1
2π

∫ π

−π

X(ω)ejωndω DTFT

Observation: Replacing, in Fourier Series

x(t) → X(ω),

Xn → x(n),

t → −ω,

T → 2π,

we obtain DTFT!

An important conclusion: DTFT is equivalent to Fourier
series but applied to the “opposite” domain. In Fourier
series, a periodic continuous signal is represented as a sum of
exponentials weighted by discrete Fourier (spectral) coefficients.
In DTFT, a periodic continuous spectrum is represented as a
sum of exponentials, weighted by discrete signal values.
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Remarks:

• DTFT can be derived directly from the Fourier series,

• All Fourier series results can be applied to DTFT

• Duality between time and frequency domains.
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Parseval’s Theorem for DTFT

∞∑
n=−∞

|x(n)|2 =
1
2π

∫ π

−π

|X(ω)|2dω

1
2π

∫ π

−π

|X(ω)|2dω

=
1
2π

∫ π

−π

∞∑
n=−∞

∞∑
m=−∞

x(n)x∗(m)e−jω(n−m)dω

∞∑
n=−∞

∞∑
m=−∞

x(n)x∗(m)
1
2π

∫ π

−π

e−jω(n−m)dω︸ ︷︷ ︸
δ(n−m)

=
∞∑

n=−∞
|x(n)|2.
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When Does DTFT Exist (i.e. |X(ω)| <∞)?

Sufficient condition:

∞∑
n=−∞

|x(n)| <∞.

|X(ω)| =

∣∣∣∣∣
∞∑

n=−∞
x(n)e−jωn

∣∣∣∣∣
≤

∞∑
n=−∞

|x(n)| |e−jωn|︸ ︷︷ ︸
1

=
∞∑

n=−∞
|x(n)| <∞.

Example: Finite-energy rectangular signal:

|X(ω)| =
N/2∑

n=−N/2

Ae−jωn = A

N/2∑
n=−N/2

e−jωn

= A(N + 1)
sin(N+1

2 ω)
(N + 1) sin(ω

2 )
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≈ A(N + 1)
sin(N+1

2 ω)
(N + 1)ω

2︸ ︷︷ ︸
well-known function

for ω � π

Both functions look very similar in their “mainlobe” domain.
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DTFT — Convolution Theorem

If X(ω) = F{x(n)} and H(ω) = F{h(n)} and

y(n) =
∞∑

k=−∞

x(k)h(n− k) = {x(n)} ? {h(n)}

then Y (ω) = F{y(n)} = X(ω)H(ω).

Y (ω) = F{y(n)} =
∞∑

n=−∞


∞∑

k=−∞

x(k)h(n− k︸ ︷︷ ︸
m

)

 e−jωn

=
∞∑

m=−∞


∞∑

k=−∞

x(k)h(m)e−jω(m+k)


=


∞∑

k=−∞

x(k)e−jωk


{ ∞∑

m=−∞
h(m)e−jωm

}
= X(ω)H(ω).

Windowing theorem: If X(ω) = F{x(n)}, W (ω) =
F{w(n)}, and y(n) = x(n)w(n), then

Y (ω) = F{y(n)} =
1
2π

∫ π

−π

X1(λ)X2(ω − λ)dλ.
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Frequency-Domain Characteristics
of LTI Systems

Recall impulse response h(n) of an LTI system:

y(n) =
∞∑

k=−∞

h(k)x(n− k).

Consider input sequence x(n) = ejωn, −∞< n <∞.

y(n) =
∞∑

k=−∞

h(k)ejω(n−k) = ejωn
∞∑

k=−∞

h(k)e−jωk

︸ ︷︷ ︸
H(ω)

= ejωnH(ω).

The complex function

∞∑
k=−∞

h(k)e−jωk

is called the frequency response or the transfer function of the
system.

• Impulse response and transfer function represent a DTFT
pair =⇒ H(ω) is a periodic function.
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• Transfer function shows how different input frequency
components are changed (e.g. attenuated) at system output.

• Y (ω) = X(ω)H(ω) implies that an LTI system cannot
generate any new frequencies, i.e. it can only amplify
or reduce/remove frequency components of the input.
Conversely, if a system generates new frequencies, then
it is not LTI!

• Systems that are not LTI do not have a meaningful frequency
response.
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Elements of Sampling Theory
Preliminaries

How are CTFT and Fourier series related for periodic signals?
Consider a continuous-time signal xc(t) with CTFT

X(Ω) = 2πδ(Ω − Ω0).

Then

x(t) =
1
2π

∫ ∞

−∞
2πδ(Ω − Ω0)ejΩtdt = ejΩ0t.

We know: periodic signal has line equispaced spectrum. Let
X(Ω) be a linear combination of impulses equally spaced in
frequency:

X(Ω) =
∞∑

n=−∞
2πXnδ(Ω − nΩ0). (1)

Using inverse CTFT, i.e. applying it to each term in the sum,
we obtain:

x(t) =
∞∑

n=−∞

1
2π

∫ ∞

−∞
2πXnδ(Ω − nΩ0)ejΩtdΩ

=
∞∑

n=−∞
XnejnΩ0t Fourier series!
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CTFT of a periodic signal with Fourier-series coefficients {Xn}
can be interpreted as a train of impulses occurring at the
harmonically-related frequencies with the weights {2πXn}.

How about the following signal (periodic impulse train), defined
as

s(t) =
∞∑

n=−∞
δ(t− nT )?

Note: The above periodic impulse train does not satisfy
the Dirichlet conditions. Hence, its CTFT is introduced and
understood in a limiting sense.

Here are couple of useful expressions for the periodic impulse
train:

∞∑
k=−∞

δ(t− kT ) =
1
T

∞∑
n=−∞

ejn(2π/T )t,

2π

T

∞∑
n=−∞

δ
(
Ω − 2πn

T

)
=

∞∑
k=−∞

e−jΩkT .

Also, the Fourier transform of a periodic impulse train is a
periodic impulse train:

∞∑
k=−∞

δ(t− kT ) ↔ 2π

T

∞∑
n=−∞

δ
(
Ω − 2πn

T

)
.
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Proof.

The impulse train s(t) =
∑∞

k=−∞ δ(t−kT ) is a periodic signal
with period T =⇒ we can apply Fourier series and find the
Fourier coefficients:

Sn =
1
T

∫ T/2

−T/2

δ(t)e−j2πn
T tdt =

1
T

.

Hence

s(t) =
1
T

∞∑
n=−∞

ejn(2π/T )t.

Also

S(Ω) =
∫ ∞

−∞
s(t)e−jΩtdt =

∞∑
k=−∞

e−jΩkT .
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From (1), we obtain

S(Ω) =
∞∑

n=−∞
2π Sn︸︷︷︸

1/T

δ(ω − n Ω0︸︷︷︸
2π
T

) =
2π

T

∞∑
n=−∞

δ
(
Ω − 2πn

T

)
.

2
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The Sampling Theorem

Introduce the “modulated” signal

xs(t) = xc(t)s(t) = xc(t)
∞∑

n=−∞
δ(t− nT ).

Since xc(t) δ(t− t0) = xc(t0) δ(t− t0), we obtain

xs(t) =
∞∑

n=−∞
x(nT ) δ(t− nT ) =

∞∑
n=−∞

x(n) δ(t− nT ).

Using this “modulated” signal, we describe the sampling
operation.
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xs(t) = xc(t) s(t) = xc(t) ·
1
T

∞∑
n=−∞

ejn(2π/T )t

=
1
T

∞∑
n=−∞

xc(t) ejn(2π/T )t.

It turns out that the problem is much easier to understand
in the frequency domain. Hence, we compute the Fourier
transform of xs(t). Looking at each term of the summation,
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we have from the frequency-shift theorem:

xc(t) ejn(2π/T )t ↔ Xc

(
Ω − n

2π

T

)
.

Hence, the Fourier transform of the sum is

Xs(Ω) = 1
T

∑∞
n=−∞Xc

(
Ω − 2πn

T

)
.

Recall that:

xs(t) =
∞∑

n=−∞
x(nT ) δ(t− nT ) =

∞∑
n=−∞

x(n) δ(t− nT ).

Taking the FT of the above expression, we obtain another
expression for Xs(Ω):

Xs(Ω) =
∞∑

n=−∞
x(n)

∫ ∞

−∞
δ(t− nT )e−jΩtdt

=
∞∑

n=−∞
x(n) e−jΩNT = X(ω)︸ ︷︷ ︸

DTFT{x(n)}

∣∣∣
ω=ΩT

.

By sampling, we throw out a lot of information: all values of
x(t) between the sampling points are lost.
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Question: Under which conditions can we reconstruct the
original continuous-time signal x(t) from the sampled signal
xs(t)?

Theorem. Suppose x(t) is bandlimited, so that X(Ω) = 0
for |Ω | > ΩM. Then x(t) is uniquely determined by its samples
{x(nT )} = {x(n)} if

Ωs = 2π
T > 2ΩM ≡ the Nyquist rate.
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Frequency-Domain Effect for Nyquist Sampling
(2π/T = 2ΩM)
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Frequency-domain Effect for Sampling Faster
than Nyquist (2π/T > 2ΩM)
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Frequency-domain Effect for Sampling Slower
than Nyquist (2π/T < 2ΩM)
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Elements of Sampling Theory (cont.)

Introduce a lowpass filtering operation. The spectrum of the
filtered signal:

Xf(Ω) = HLP(Ω)Xs(Ω)

where HLP(Ω) ≡ ideal lowpass filter:

HLP(Ω) =
{

T, −Ωc ≤ Ω ≤ Ωc,
0, otherwise

,

with the cut-off frequency Ωc. How to reconstruct a
bandlimited signal from its samples in the time domain?

Having a signal sampled at a rate higher than the Nyquist rate
and infinite number of its discrete values, the signal can be
exactly recovered as

xf(t) =
∞∑

n=−∞
x(n)

sin[π(t− nT )/T ]
π(t− nT )/T

ideal interpolation formula.

Proof. Start from: Xf(Ω) = Xs(Ω)HLP(Ω). In time domain

xf(t) = {xs(t)} ? {hLP(t)}

=

{ ∞∑
n=−∞

xc(nT )δ(t− nT )

}
? {hLP(t)}
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=
∫ ∞

−∞

∞∑
n=−∞

xc(nT )δ(τ − nT )hLP(t− τ)dτ

=
∞∑

n=−∞
x(n)hLP(t− nT ).

Ideal transfer function:

HLP(Ω) =
{

T, −π
T ≤ Ω ≤ π

T ,
0, otherwise

,

Ideal impulse response:

hLP(t) =
sin(πt/T )

πt/T
.

Now, insert hLP(t) into the equation for xf(t). 2
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Representations of Narrowband Signals

Narrowband signals have small bandwidth compared to the
band center (carrier) frequency.

B � F0.

xc(t) = a(t)︸︷︷︸
amplitude
modulation

cos[2πF0︸ ︷︷ ︸
Ω0

t + θ(t)︸︷︷︸
phase

modulation

].
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The above representation can be used to describe any signal,
but it makes sense only if a(t) and θ(t) vary slowly compared
with cos(2πF0t), or, equivalently, B � F0.

• Complex-envelope and

• Quadrature-component

representations of narrowband signals.

Complex-envelope representation:

xc(t) = Re{a(t) exp(j[Ω0t + θ(t)])}
= Re{a(t) exp[jθ(t)]︸ ︷︷ ︸

x̃c(t)

exp(jΩ0t)}.

The complex-valued signal x̃c(t) contains both the amplitude
and phase variations of xc(t), and is hence referred to as the
complex envelope of the narrowband signal xc(t).
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Quadrature-component representation:

xc(t) = a(t) cos θ(t)︸ ︷︷ ︸
xcI(t)

cos(Ω0t)− a(t) sin θ(t)︸ ︷︷ ︸
xcQ(t)

sin(Ω0t).

xcI(t) and xcQ(t) are termed the in-phase and quadrature
components of narrowband signal xc(t), respectively.

Note that
x̃c(t) = xcI(t) + jxcQ(t).

If we “blindly” apply the Nyquist theorem, we would choose

FN = 2(F0 +
B

2
) ≈ 2F0 for B � F0.

However, since the effective bandwidth of xc(t) [and x̃c(t)] is
B/2, the optimal rate should be B!

Recall

xc(t) = a(t) cos[2πF0t + θ(t)]

= a(t) · exp{j[Ω0t + θ(t)]}+ exp{−j[Ω0t + θ(t)]}
2

=
a(t) exp[jθ(t)]

2︸ ︷︷ ︸
1
2x̃c(t)

exp(jΩ0t) +
a(t) exp[−jθ(t)]

2︸ ︷︷ ︸
1
2x̃∗c(t)

exp(−jΩ0t)
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and hence

Xc(Ω) = 1
2[X̃c(Ω − Ω0) + X̃∗

c (−Ω − Ω0)],

implying that x̃c is a baseband complex-valued signal
(occupying the band [−B/2, B/2]):

x̃c(t) =
∞∑

n=−∞
x̃c

(n

B

)sin[πB(t− n/B)]
πB(t− n/B)
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Now,

xc(t) = Re{x̃c(t) exp(j2πF0t)}

= Re
{ ∞∑

n=−∞
x̃c

(n

B

)sin[πB(t− n/B)]
πB(t− n/B)

exp(j2πF0t)
}

= Re
{ ∞∑

n=−∞
a
(n

B

)
exp{j[θ(n/B) + 2πF0t]}

sin[πB(t− n/B)]
πB(t− n/B)

}
=

∞∑
n=−∞

a
(n

B

)
cos[2πF0t + θ(n/B)]

sin[πB(t− n/B)]
πB(t− n/B)

=
∞∑

n=−∞

[
xcI

(n

B

)
cos(2πF0t)− xcQ

(n

B

)
sin(2πF0t)

]
·sin[πB(t− n/B)]

πB(t− n/B)
.
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Z Transform

X(z) = Z{x(n)} =
∞∑

n=−∞
x(n)z−n.

Relationship between the z transform and DTFT: substitute
z = rejω,

X(z)|z=rejω =
∞∑

n=−∞
x(n)(rejω)−n

=
∞∑

n=−∞
{x(n)r−n}e−jωn

= F{x(n)r−n} =⇒

The z transform of an arbitrary sequence x(n) is equivalent to
DTFT of the exponentially weighted sequence x(n)r−n.

If r = 1 then

X(z)|z=ejω = X(ω) = F{x(n)} =⇒

DTFT corresponds to z transform with |z| = 1.

Notation: Observe that X(ejω) ≡ X(ω).
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The z transform reduces to the DTFT for values of z on the
unit circle:

Question: When does the z transform converge?

Region of convergence (ROC) ≡ range of values of z for which
|X(z)| <∞.

Example: The z transform of the signal x(n) = anu(n) is

X(z) =
∞∑

n=−∞
anu(n)z−n =

∞∑
n=0

(az−1)n.
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For convergence, we require that

∞∑
n=0

|az−1|n <∞,

which holds if |az−1| < 1 or, equivalently, |z| > |a|. Note:

X(z) =
1

1− az−1
.

Example: The z transform of the signal

x(n) = −anu(−n− 1) =
{

0, n ≥ 0,
−an, n ≤ −1

is

X(z) = −
−1∑

n=−∞
anz−n = −

∞∑
n=1

a−nzn = −
∞∑

n=1

(a−1z)n

= − a−1z

1− a−1z
=

1
1− az−1

≡ same as previous ex.

But, ROC is now |z| < |a|.

Remark: a discrete-time signal x(n) is uniquely determined by
its z transform X(z) and its ROC.
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ROC Properties

• The ROC of X(z) consists of a ring in the z plane centered
about the origin,

• The ROC does not contain any poles,

• If x(n) is of finite duration, then the ROC is the entire z
plane, except possibly z = 0 and/or z =∞,

• If x(n) is a right-sided sequence, and if the circle |z| = r0

is in the ROC, then all finite values of z for which |z| > r0

will also be in the ROC (need to check z =∞),

• If x(n) is a left-sided sequence, and if the circle |z| = r0 is
in the ROC, then all finite values of z for which 0 < |z| < r0

will also be in the ROC (need to check z = 0),

• If x(n) is a two-sided sequence, and if the circle |z| = r0 is
in the ROC, then the ROC will be a ring in the z plane that
includes the circle |z| = r0 (we can represent this sequence
as right-sided sequence + left-sided sequence).

EE 524, Fall 2004, # 3 46



Z Transform (cont.)

Inverse Z transform:

Recall that
X(z)

∣∣∣
z=rejω

= F{x[n]r−n}.
Applying the inverse DTFT, we get

x[n] = rnF−1{X(rejω)}

= rn · 1
2π

∫ π

−π

X(rejω)ejωn dω

=
1
2π

∫ π

−π

X(rejω︸︷︷︸
z

)(rejω︸︷︷︸
z

)n dω

=
1

2πj

∮
X(z)zn−1 dz ←− dz = jrejωdω.

Comments:

•
∮
· · · dz denotes integration around a closed circular contour

centered at the origin and having radius r,

• r must be chosen so that the contour of integration |z| = r
belongs to the ROC,

• contour integration in complex plane may be a complicated
task; simpler alternative procedures exist for obtaining a
sequence from a Z transform.
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LTI system analysis:

y(n) = {h(n)} ? {x(n)} ↔ Y (z) = H(z)X(z)

Results:

• A discrete-time LTI system is causal if and only if the ROC
of its transfer function is the exterior of a circle including
infinity.

• A discrete-time LTI system is stable if and only if the ROC
of its transfer function includes the unit circle |z| = 1.
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Rational Z transforms

Recall LCCD equations of ARMA processes

N∑
k=0

aky(n− k) =
M∑

k=0

bkx(n− k).

Taking z-transforms of both sides, we get

N∑
k=0

Z{aky(n− k)} =
M∑

k=0

bkZ{x(n− k)},

yielding

Y (z)
N∑

k=0

akz
−k = X(z)

M∑
k=0

bkz
−k.

Hence, the transfer function of an ARMA process is

H(z) =
Y (z)
X(z)

=
∑M

k=0 bkz
−k∑N

k=0 akz−k
.
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