Summer Experience

- EPFL in Lausanne, Switzerland
 - Dr. Fernando Porté-Agel
- July 17th - September 1st
- Surface Flow Convergence
How?

• Emailed Dr. Porté-Agel
 – Followed up on Skype
 – Offered to host me (easy part)

• Visa process (nightmare)
 – Work Visa
 – 3 month process
 – Traveled to Chicago and DC
 – Received visa 5 days before I left
Switzerland
Lausanne

- Population: 146,372 (4th in Switzerland)
- Northernmost shore on Lake Geneva
- Smallest city in world w/ rapid transit system
- Olympic Capital
Lausanne

Summer 2015
Travels

Summer 2015
Surface Flow Convergence

- **Observed**: Flow *veers* as it travels through a wind farm.

- Near-ground measurements show **surface flow convergence**.

- **Hypothesis**: pressure gradient imposed by turbines responsible.
Surface Flow Convergence: How?

- Pressure drops across turbine
 - Recovers far downstream

- Complete pressure recovery may not be possible with closely spaced turbines

Increasing pressure deficit in deep arrays
Surface Flow Convergence: Data

Surface flow veering observations (courtesy Prof. Eugene Takle; ISU)
Computational Analysis

- RANS + Actuator Disk
- OpenFOAM
- Validation:
 - 1-D Momentum Theory
 - Risø (Tellus) turbine
- Infinite array
 - Angled Inflow
 - Uniform & Neutral B.L.
- Story County Wind Farm
 - Crop/Wind-Energy Experiment (CWEX)
RANS Results

Semi-infinite wind farm at Hub Height (Uniform):

Compounding pressure drops

Flow Angle Change of $\approx 4^\circ$
Semi-infinite wind farm at surface (Neutral ABL):

Compounding pressure drops

Flow Angle Change of $\approx 8^\circ$... Much Higher!

Balance between static and dynamic pressure
Large Eddy Simulation

• How do unsteady phenomena affect SFC?
 – Atmospheric Stability and Turbulence
 – Wake Rotation
 – Coriolis Force?

• Implementation: SOWFA
 – OpenFOAM
 – Actuator Line Model
Domain

- Turbine: NREL 5MW Ref x10
 - D = 126 m
- Boundary Conditions (Uniform):
 - N-S: Periodic (Semi-infinite wind farm)
 - W-E: Inflow/Outflow
 - Top-Bottom: Slip

\[U = 8 \text{ m/s} \]

\[15D \quad 10D \]

\[5D \quad 70D \]
Uniform Results: Pressure
Uniform Results: Flow Angle
Uniform Results: Normalize Power

![Graph showing normalized power vs turbine number with an annotation highlighting a particular point.](image-url)
QUESTIONS?