FOUNDATIONS FOR WIND TURBINES
ENGR 340 – Fall 2011

Jeramy C. Ashlock
Assistant Professor, CCEE

Vern Schaefer
Professor, CCEE
OUTLINE

<table>
<thead>
<tr>
<th>Topics</th>
<th>Lecture #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design requirements, Foundation types</td>
<td>1</td>
</tr>
<tr>
<td>Overview of geotechnical engineering</td>
<td>1 & 2</td>
</tr>
<tr>
<td>• Soil mechanics</td>
<td></td>
</tr>
<tr>
<td>• Site investigations</td>
<td></td>
</tr>
<tr>
<td>• In-situ tests</td>
<td></td>
</tr>
<tr>
<td>• Laboratory tests</td>
<td></td>
</tr>
<tr>
<td>Foundations for wind turbines, Design example</td>
<td>2</td>
</tr>
</tbody>
</table>
TURBINE FOUNDATION LOADS

- Vertical, shear forces and significant overturning moments are transmitted to foundation by tower.
- Must be resisted within tolerances for foundation settlement and tilt.
- Manufacturers typically specify horizontal and rotational foundation stiffness criteria.
- Loading direction changes with wind direction and nacelle orientation.
- Circular foundation shape is therefore optimal, but straight-sided (e.g. octagonal, hexagonal) is easier to construct.
- Anchors can be used to add rotational strength.
To prevent loss of contact and uplift, the foundation is typically designed such that the eccentricity e of the resultant is $e < B/6$. In other words, $M < PB/6$.

Figure 5.14 (a) Eccentric and (b) moment loads on shallow foundations.
OFFSHORE FOUNDATION OPTIONS

Source: Malhothra, 2011
OFFSHORE FOUNDATIONS

Photos: NREL
TYPICAL TURBINE FOUNDATION OPTIONS

- On rock or competent soil:
 - Shallow concrete “inverted tee” mat foundations ($)

- On weak or soft soils (bearing capacity or stiffness too low, settlements too high):
 - Rammed Aggregate Piers or VibroPiers under footings or mats ($$)
 - Soil improvement such as deep soil mixing, compaction, over-excavation & replacement with compacted lifts of aggregate ($$$)
 - Deep foundations; piles, drilled shafts ($$$$$)
 - Concrete-filled corrugated pipe with post-tensioned anchor bolts (proprietary design; $$?)
Figure 7.44 (a) Plain Slab; (b) Stub and Pedestal; (c) Stub Tower Embedded in Tapered Slab; (d) Slab Held Down by Rock Anchors
PILED FOUNDATION VARIANTS

Figure 7.45 (a) Pile Group and Cap; (b) Solid Mono-pile; (c) Hollow Mono-pile
Figure 7.46 Piled Foundation for Steel Lattice Tower
OCTAGONAL SHALLOW MAT FOUNDATIONS

Typical dimensions:

- **Footing**
 - width: 50-65 ft
 - avg. depth: 4-6 ft

- **Pedestal**
 - diameter: 18-20 ft
 - height: 8-9 ft
INNOVATIVE TURBINE FOUNDATION SOLUTIONS

The Rammed Aggregate Pier system, designed by the Geopier Foundation Company, provides reliable support solutions for tower foundations.

By Brendan FitzPatrick, P.E.
RAPs UNDER FOOTINGS OR MATS

RAPs are used for

- Decreased settlements
- Improved bearing capacity in weak or compressible soils
- Increased rotational stiffness
- Uplift resistance

Alternative solutions for uplift resistance:
- helical anchors or helical piles
Figure 11.51 Types of anchors (Adapted from Kulhawy, 1985; Used with permission of ASCE).
P&H TENSIONLESS FOUNDATION DESIGN

- Proprietary design of Patrick & Henderson, Inc.
 - concentric corrugated metal pipes filled with concrete that is compressed by post-tensioned rods

http://www.maine.gov/doc/lurc/projects/redington/Click_to_Start.htm
For more info, see Patent # 5586417 patents.google.com

CONSTRUCTION SEQUENCE:

1. Excavate foundation hole by pipe excavator or drill rig. Excavated wall hole to be a minimum of 2x larger in diameter than the outer cap diameter. Encased hole shall be covered or sealed by fencing to prevent unauthorized entrance.

2. Place, frame, and secure outer cap into foundation excavation.

3. Place ground wire outside cap as required.

4. Supply annular space between foundation excavation hole and exterior outer cap.

5. Cut holes for conduits and plug placement as required to conform to construction methodology outlined by the contractor.

6. Set top form plate.

7. Position bottom embedment ring inside outer cap.

8. Use and install a purchased group of anchor bolts in each quadrant inside the outer cap.

9. Load template and embedment ring with bolts, secure with nuts, center bolts, and ring. Lift template plate and tie to repair wrap. Tie repair wrap around each outer anchor bolt at equally spaced vertical intervals as shown on sheet 5.5 at a minimum of 8 spacing.

10. Place, frame, and secure bolts/template assembly inside outer cap.

11. Place, frame, and secure inner cap inside embedment and template rings, baskets, with excess material. Excavated hole in excess of 2 feet 00 in. in diameter to within 4 to 5 feet 00 in. from top of inner cap.

12. Install electric and communication conduits through cap, place ground wire for back cap.

13. Continue backing of inner cap to floor depth. Place NO. 1 repair or tie mesh for concrete floor reinforcement. Install, a pressure relief valve pipe (100 kg) PVC drain pipe for central drainage.

14. Check level on template, place hanger, and pump concrete. Concrete floor to be poured monolithic/monolithic to suit a minimum of 1 inch (25 mm) from sides, to center drain pipe. Finish floor with smooth and broom finish. Apply concrete curing compound.

15. Remove template assembly and form plate to level Right. Next template and form plate. At subsequent foundation, allow concrete to cure a minimum of 500 psi prior to beginningasonry section.

16. Place concrete drain grate.

17. All construction shall be performed in accordance with safe standards of the industry.

CONFIDENTIAL
AND PRELIMINARY OF
EXCLUSIVE & HENDERSON, INC.

PATENT # 5,586,417
USA PATENT
PATENT # 5,586,417
NOT FOR CONSTRUCTION

PROPRIETARY WARNING

USE THE PROPRIETARY STATEMENT ON THIS DESIGN AND WITHOUT PERMISSIONS AND PERMISSIONS MAY BE IMPOSSIBLE.

IF YOU DO NOT HAVE A SET AGREEMENT AND MANUFACTURER'S AGREEMENT, THESE IMPOSSIBILITY TO REMOVE FROM TRANSMISSION.

THIS SET NO. _______ ASSIGNED TO _______

COPYRIGHT © 2001
PATRICK & HENDERSON, INC.

PRELIMINARY

30' P&H TENSIONLESS FOUNDATION USA PATENT #5,586,417

CONFIDENTIAL

NOT APPROVED FOR CONSTRUCTION

ASSEMBLY VIEW

30' P&H TENSIONLESS FOUNDATION USA PATENT #5,586,417

CONFIDENTIAL
“Using site-specific design loads and carrying out site-specific wind turbine designs is somewhat in contrast with the current trend within the wind turbine industry. In order to keep down manufacturing costs, the current trend is not to site-optimise wind turbines, but rather to produce a selection of standard wind turbines. The task is then to choose a standard wind turbine from this selection and verify that it is suitable for a given location. The tower and the foundation may still be site-optimised if desirable, and site-specific loads will be required for this purpose. The foundation design will always have to be site-specific in that it needs to be designed for the prevailing local soil conditions.”

Guidelines for Design of Wind Turbines, 2nd ed. – DNV/Risø
“Foundation designs are integrated into the type certification for some turbines. Where this is the case, the foundation design must be evaluated for the external conditions for which it is intended. Poor geotechnical investigation and foundation design have led to delays and cost overruns at European wind farms (Gerdes et al. 2006).”

DESIGN STEPS/CHECKS FOR SHALLOW FOUNDATIONS

1. Minimum embedment below frost depth
2. Bearing capacity
3. Settlements: Elastic, Consolidation and Differential
4. FS against sliding and overturning
5. Structural design of foundation (typ. reinforced concrete)
6. Drainage
7. Foundation stiffness accounting for modulus degradation due to cyclic loading
8. Dynamic analysis for avoiding resonance of soil-foundation-structure system
9. Scour and erosion (for offshore foundations)
BEARING CAPACITY: ECCENTRICITY OF LOAD

- Design loads V, H act at the foundation base

- Eccentricity $e = \frac{M}{V}$

- H is reduced if a torque M_z acts about vertical axis (see DNV/Risø Guidelines)
Reduced effective foundation area $A_{\text{eff}} = b_{\text{eff}} \times l_{\text{eff}}$ is defined such that the eccentric vertical load is at the center of the effective area:

\[b_{\text{eff}} = b - 2e \]
\[l_{\text{eff}} = b \]
BEARING CAPACITY: EFFECTIVE AREA FOR DOUBLY ECCENTRIC LOAD

- For square foundations, a doubly eccentric load further reduces the effective area:

\[b_{eff} = l_{eff} = b - e \sqrt{2} \]

- Since direction of eccentricity varies with nacelle orientation, a circular foundation plan is the most efficient
BEARING CAPACITY: EFFECTIVE AREA FOR ECCENTRIC LOAD ON OCTAGONAL/CIRCULAR FOUNDATIONS

- Octagonal foundation is more practical for construction
- Ellipse is used for reduced area:

\[A_{\text{eff}} = 2 \left[R^2 \cos^{-1} \left(\frac{e}{R} \right) - e \sqrt{R^2 - e^2} \right] \]

Major axis: \(l_e = 2R \sqrt{1 - \left(1 - \frac{b}{2R}\right)^2} \)

Minor axis: \(b_e = 2(R - e) \)
BEARING CAPACITY: EFFECTIVE AREA FOR ECCENTRIC LOAD ON OCTAGONAL/CIRCULAR FOUNDATIONS

- Ellipse can be replaced by equivalent rectangle for ease of design calculations:

 Take

 \[b_{\text{eff}} = l_{\text{eff}} \frac{b_e}{l_e} \]

 then

 \[l_{\text{eff}} = \sqrt{A_{\text{eff}} \frac{l_e}{b_e}} \]
BEARING CAPACITY

- Fully drained (long-term) conditions:

\[q_{ult} = c'N_c + q'N_q + \frac{1}{2} \gamma' b_{eff} N_\gamma \]

- Undrained (short-term or rapid loading) conditions in clay:

\[\phi_u = 0, \quad N_\gamma = 0, \quad N_q = 1, \]

\[q_{ult} = c_u N_c + q \]

- Generally need to apply shape, depth, & inclination factors as well
SETTLEMENT

- Total settlement \(S_T = S_e + S_c + S_s \)
 - \(S_e \) = Elastic settlement (immediate). Most important for sands.
 - \(S_c \) = Consolidation settlement; due to squeezing out of water and air from pore space. Most important for clays, small for sands. Can take years to complete. Rate and amount of settlement determined from consolidation theory combined with lab tests.
 - \(S_s \) = Secondary settlement; long-term rearrangement of soil structure under constant effective stress. Magnitude depends on mineral types present in soil
FS AGAINST SLIDING

\[F_s = \frac{\Sigma (\text{hor. resisting forces})}{\Sigma (\text{hor. driving forces})} = \frac{c_b \cdot A_{\text{eff}} + V \tan \delta_b}{H} \geq 1.5 \]

- \(c_b = \) adhesion between soil and foundation, often taken as 1/2 to 2/3 of the soil’s cohesion
- \(\delta_b = \) angle of interface friction between soil & base, often taken as 1/2 to 2/3 of \(\phi \)
- For Undrained conditions in clay, \(\phi_u = 0; \)

\[F_s = \frac{c_b \cdot A_{\text{eff}}}{H} \geq 1.5 \]
FS AGAINST OVERTURNING

Similar to the case of sliding, we can take the ratio of restoring moments to overturning moments:

\[F_s = \frac{\sum \text{(restoring moments)}}{\sum \text{(overturning moments)}} \geq 1.5, \]

Loss of contact is usually ensured by keeping \(e < \frac{B}{6} \).
FACTOR OF SAFETY AGAINST OVERTURNING

$F_S < 1.0$
DRAINAGE

- Needed to maintain the design bearing capacity as calculated based on the assumed maximum water table elevation

- Can be provided by using drainage “tiles”, free-draining backfill, and sloping the finished grade away from foundation to prevent ponding

- Excessive wetting of clay soils can cause expansion \rightarrow differential settlements

- Excessive drying of clay soils (e.g. from nearby vegetation) can cause shrinking \rightarrow settlements
“A complete natural frequency analysis shall be performed for the combined structure consisting of turbine, tower, tripod and piles” [and soil]. For this purpose, the non-linear soil must be linearized. It is to be verified that the lowest frequencies differ from at least ±10% of the 1P and 3P rotor frequencies at nominal power.”

Guidelines for Design of Wind Turbines, 2nd ed. – DNV/Risø
DYNAMIC ANALYSIS: COUPLED SOIL-STRUCTURE INTERACTION

“The dynamics and relative stiffness of the supporting structural and foundation components, commonly envisaged as a monotower in shallow water (but which could be a vertical axis system, a floating system, etc.), have an interrelationship with the stiffness and rotation frequency and loads of the blades that must be carefully addressed in the design for long-term performance.”

DYNAMIC FOUNDATION STIFFNESS

- Dynamic Soil-Structure Interaction (SSI): dynamic soil response affects response of structure and vice-versa
- Stiffness of soil is generally nonlinear and frequency dependent, but often simplified in terms of springs and dashpots
- Stiffness (shear modulus G) and damping (ξ) depend non-linearly on cyclic shear strain γc
- As γc increases, G decreases from small-strain value Gmax while ξ increases
- Design: must use a reduced G based on anticipated shear strain level (typically 10^-2 to 10^-3 for wind turbines) in dynamic analysis of soil-foundation-turbine system
- G can then be used to obtain an “equivalent elastic” Young’s modulus E for calculating elastic settlements using the reduced foundation area (see Mayne et al. 2002)

DESIGN OF PILE FOUNDATIONS

More complicated than shallow foundations

Covered in CE 561

Ensoft (1996), Computer Program Group 4.0 User’s Manual
REFERENCES

Selected information, images and figures are from

- Ashlock, J.C., Iowa State University CCEE Dept.
- Chang and DiMaggio (2002), *Geotechnical Engineering Circular No. 6, Shallow Foundations*, Federal Highway Administration Office of Bridge Technology
- GeoPier Foundation Company
- Hayward Baker Geotechnical Construction
- National Renewable Energy Laboratory (NREL)
- Pile Driving Contractors Association (PDCA)
- Terracon Consulting Engineers and Scientists, Des Moines, IA
- www.windsystemsmag.com