U7 Continuous Random Variables
11
[image: image83.wmf](

)

0

=

x

P

X



[image: image84.wmf]³

Module U7
Continuous Random Variables

Primary Author: 
James D. McCalley, Iowa State University

Email Address: 
jdm@iastate.edu 
Last Update: 
7/12/02

Prerequisite Competencies: 
Discrete Random Variables, Module U6

Module Objectives:
1. To distinguish continuous random variables from discrete random variables.


2. To explain the relationship between a probability density function and a probability mass function.


3. To obtain cumulative distribution functions from probability density functions and vice-versa.


4. To use probability density functions and cumulative distribution functions to obtain probabilities.

Overview

A continuous random variable (RV), like a discrete RV, is a real numerically valued function of the experimental outcomes that is defined over a sample space. It is the nature of the sample space that determines which type of RV it is; RVs with countable sample spaces are discrete; RVs with non-countable sample spaces are continuous.

We provided examples of discrete RVs in module U6. One of these, the power quality example, illustrated a discrete RV where THD measurements were placed into one of nine discrete categories. This additional action of categorization discretized the sample space. However, the sample space for this experiment is actually inherently continuous since the THD measurements can, in reality, take on any real value. Thus, we see that we could have treated the uncertainty in this experiment with a continuous RV. Another perspective to take is that we can, if we like, discretize any continuous RV. 

We provide two other examples of continuous RVs.
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Example IM1: A control center for a power system uses data associated with a limited number of flows and voltage magnitudes, measured at substations, and then communicated to the computer system in the control center headquarters. This data is used in a state estimation program to make a estimate of all flows, voltage magnitudes, and voltage angles in the system. The computation is decidedly an estimate because (1) the number of measurements is limited, and (2) there is error present in the measurements that are available. Regarding (2), one of the sources of the error is the inaccuracy of the instrumentation used to obtain the measurements.

Assume that a particular measurement indicates that a voltage magnitude is 500kV. It is known that the instrument taking this measurement is accurate only to within 
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. Therefore, the actual voltage magnitude is between 475 and 525, and it may take on any values in between. We may represent this voltage magnitude as a continuous RV; its sample space is any real number in the interval 475 to 525. We will denote this RV as V (for voltage).

Example LL1: In a production costing program, it is important to account for the uncertainty of the loads. This information is then used in the program to identify fuel costs requirements for the next planning period.

Consider that a certain load varies between 5MW and 10MW. The load level may be considered as a continuous RV having a sample space of any real number in the interval 5 to 10. We will denote this RV as D (for demand).

U7.1
Probability Density Functions

In the discrete case, we used the probability mass function (PMF), 
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 to characterize the relation between the probability of the RV X taking on the value x. This probability was given as an explicit non-zero numerical value, e.g., in the power quality example, the probability of a THD measurement being “good” (level 3, THD range 2.0-3.0) was 
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However, if we were to use a continuous RV, then we allow that our RV X may take on any THD value 
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. Since there are an infinite number of possible values that X may take, the probability that X is exactly equal to a particular value, say 2.43985, is zero.

In understanding this last statement, the reader should note that as long as 
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, there are an infinite number of possible values that X may take. For example, even if 
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, the number of reals in the interval is still infinite. This means that there are an infinite number of possible outcomes in the sample space. If there are an infinite number of possible outcomes, then the probability that any single one of them will occur must be zero, 
[image: image8.wmf](

)

0

=

x

P

X


.

The analogy to having a probability mass may be helpful here. In the discrete case, the “masses” were concentrated at single points, sort of like weights hanging on a bar. In the continuous case, however, we think of the mass, in its entirety, as being distributed along the bar. Here, it might be helpful to think of the “bar” as the bottom of a tall (or deep), long, but very thin glass aquarium that is filled with sand, rather than water. The sand in the aquarium is quite deep in some places but very shallow in others, and of medium depth at still others. Let’s assume that the total mass of the sand is 1 unit. What is the mass of the sand just above a single point at the bottom of the aquarium? If we are truly speaking of a single point, then it has no “length”, and the mass above it must be zero. Although the mass above it is zero, there is clearly a height associated with the sand at the point. If the sand along the length of the aquarium maintained this height for some distance (say 1mm), then the mass of the sand above the 1mm length would be proportional to this distance. Let’s say the corresponding mass of sand was 0.04 units. Then the mass per unit length of the sand for this 1mm distance would be 0.04 units/mm. This would be the mass density
. We chose 1 mm of distance, but this distance could just as easily have been 0.000001mm, or any very small number. Therefore, in the limit as this distance approaches zero, we see that, although there is no mass above a point, there is a mass density above a point.

The situation is similar for probability, except instead of calling it a mass density, we call it a probability density. The function that describes the probability density is called a probability density function (PDF), denoted by 
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. Thinking carefully about the sand in the aquarium, one can see that probability density, i.e., the probability per unit change of the RV1 can be expressed mathematically as
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Probability density functions can take a variety of shapes. To illustrate, let’s look at two fairly simple PDFs, the uniform PDF and the triangular PDF.

Example IM2 : In our instrument measurement error example, let’s assume that given the 500 kV measurement and the 475 to 525 kV range, all subintervals of equal length within this range have an equally likely chance of including the actual voltage value, no matter how small the subinterval.  This is equivalent to saying that all subintervals have the same probability per unit voltage level, i.e., the same probability density.  Therefore, the PDF for this example is flat. Based on this fact, together with knowledge of the range, 
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, we can determine that the value of the PDF is 0.02  (we will discuss how we can obtain this value following these two examples). We denote this PDF as
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Its graph is shown in Figure U7.1.
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Figure U7.1 Uniform PDF for Instrument Measurement Error Example.

 Example LL2: In our load modeling example, let’s assume that we have historical recordings of hourly load levels. From these recordings, we may obtain various statistical information useful in probabilistic modeling. A relatively simple probability model can be formed by using only the mean 
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and the minimum and maximum level 
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. We assume that any interval lying entirely outside of the range enclosed by the minimum and maximum levels, 
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, is outside the sample space and therefore has probability zero. This assumption is reasonable since it is supported by historical data. We will further assume that the probability density, i.e., the probability per unit MW, increases linearly between 
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 and decreases linearly between 
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. This assumption is also reasonable; it says that the probability per unit MW is greatest at the mean and least at the extremes. Based on this assumption, together with knowledge of the range, 
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, and the mean, 7.5, we can determine that this PDF is given by (we will discuss how we can obtain this following these two examples):
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Its graph is shown in figure U7.2. 
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Figure U7.2 Triangular PDF for Load Level Sample

One may observe from the above two examples that 

1. 
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These are in fact two important properties of all PDFs. The first one says that the “sand mass per unit length”, i.e., the probability per unit RV, must be non-negative; this is a restatement of the first axiom (see (U5.2.3)). The second one says that the total “mass of sand”, i.e., the total probability, must be 1; this is a restatement of the second axiom (see (U5.2.4)). Another interpretation is that the total area under the curve of a PDF must be one. It was this second property that we used in determining the value of the uniform PDF and the expressions for the triangular PDF in the above two examples. It further leads us to consider the meaning of an integration over a range that is more narrow than 
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. We will do this in the next section.

U7.2

Evaluation of Probabilities Using PDFs

Let’s return to the analogy of the sand in the aquarium. Assume that we have a function of position that describes the mass density of the sand (this function would actually have the same shape as the height of the sand). We can obtain the total mass of the sand in the aquarium by integrating this density function with respect to the position, over the length of the aquarium. Similarly, we can obtain the mass of sand in any interval by integrating the density function over the length of the interval.

Probability evaluation using PDFs is just like mass evaluation using the mass density function. To see this in a more rigorous fashion, let’s return to the definition of a PDF in eq. (U7.1). Multiplying both sides by 
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, we obtain
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or
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In eq. (U7.5), the “limit” operation enforces that 
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be small. However, we can lift this requirement, letting 
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 be as large as we like, by summing the corresponding products on the left hand side through integration, i.e.,
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Letting 
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be any two real numbers, eq. (U7.6) becomes
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Since the interval 
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 corresponds to an event, eq. (U7.7) indicates that the probability of this event may be computed as the area under the curve of the PDF in the interval. As a consequence of the fact that for continuous RVs, 
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i.e.,
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This is not the case if the RV is of the mixed type, i.e., if it contains some discontinuities so that it is partially discrete. In this case, we use
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where the lower inequality sign has been changed to < in order to exclude the influence that 
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 might have if it is non-zero due to a discrete probability. Use of eq. (U7.7) is illustrated in the following examples.

Example IM3: Returning to our instrument measurement error example, determine the probability that, given the instrument reads 500kV and the PDF is as in eq. (U7.2), the actual measurement is

1. Between 475 and 525:
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2. Between 475 and 505:
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3. Between 450 and 505: 



[image: image42.wmf][

]

(

)

[

]

505

475

6

.

0

02

.

0

505

450

505

475

505

450

£

£

=

=

=

=

£

£

ò

ò

V

P

dv

dv

v

f

V

P

V


4. Less than 505:
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5. Greater than 505:
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All of the above calculations may be interpreted as areas under the curve of Figure (U7.1)

Example LL3: Returning to our load modeling example, determine the probability that, with the PDF as given in eq. (U7.3), the load level is 

1. between 5 and 10: 
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2. between 5 and 8 :
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3. between 3 and 8 :
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4. less than 8:
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5. greater than 8:
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All of the above calculations may be interpreted as areas under the curve of Figure (U7.2)

U7.3

Cumulative Distribution Functions

Equation (U7.7) provides that we may use the PDF to compute probabilities for any event corresponding to a range of values for the RV. As illustrated in the two examples of the last section, this range may be bounded by finite numbers or by plus or minus infinity. We are frequently interested in the case where the lower bound is 
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a the upper bound is finite, say b, because this is just the probability that the RV is less than or equal to b, i.e.,


[image: image51.wmf][

]

[

]

b

X

P

b

X

P

£

=

£

£

-¥


[image: image88.png]<% ()
‘(,S' N%
g i) -
°<, ”l""""""llll :i?

Powerlearn



Because this probability occurs so frequently, and because it is an integral of the density and therefore tends to be smoother and easier to analytically represent than a density
, it has been given a specific name, the cumulative probability function (CDF), denoted by 
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It is analogous to the CDF defined for the discrete case in that it gives 
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. As one might expect, however, the summation operation in the discrete case is replaced by the integration operation here.

Let’s look at some examples of CDFs before we proceed further.

Example IM4: Consider the PDF for the instrument measurement error example illustrated in Figure (U7.1) and expressed in eq. (U7.2). Application of eq. (U7.9) yields the CDF as
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Its graph is shown in Figure U7.3.
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Example LL4: Consider the PDF for the load modeling example illustrated in Figure U7.2 and expressed in eqn. U7.3. Application of eqn. U7.9 yields the CDF as 
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Its graph is shown in Figure U7.4.
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Figure U7.4 CDF for Load Level Example

Study of Figures U7.3 and U7.4 indicates that both CDFs begin at 0 and end at 1. In fact, as in the discrete case, these observations reflect two important properties of all continuous CDFs.

1. Its lower bound is zero, 
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2. Its upper bound is one, 
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In addition, again as in the discrete case, all CDFs must be non-decreasing functions. However, the CDF for the discrete case was a staircase function, as illustrated in Figures 4.3 and 4.4. In the continuous case, as illustrated in Figures 5.3 and 5.4, the CDF is smoothly increasing.

As in the discrete case (see eqn. 4.1), we may also use the CDF to obtain the probability that the RV is greater than (or greater than or equal to)
 a certain value according to
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and we can show that the probability that the RV is between two values is given by
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Finally, it is frequently of interest to obtain the PDF from the CDF. Application of the fundamental theorem of calculus to eqn. (U7.9) results in 
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Problem 1

Suppose that the temperature T of a certain conductor has a uniform pdf in the range 40 to 60 degrees C. Then compute:

(a) 
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Problem 2

Let x denote the vibratory stress (psi) on a wind turbine blade for a particular wind speed y. Assume that the pdf for X is given by 
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Note that y is just a constant.

(a) Verify that 
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 is a legitimate pdf

(b) Suppose y=100. What is the probability that x is 

(i) less than 200?

(ii) less than or equal to 200?

(iii) Greater than 200?

(c) What is the probability that x is between 100 and 200?

(d) Give an expression for 
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Problem 3

A machine produces copper wire used in household electrical wiring. Occasionally, there is a flaw at some point along the wire. The length of wire (in meters) produced between successive flaws is a continuous random variable X with pdf given by
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(a) Determine c

(b) Find the CDF for X.

(c) Find 
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Problem 4

A continuous random variable X has a probability density function (pdf) given by the following expressions and illustrated in the figure.
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(a) Evaluate the probability 
[image: image73.wmf][

]

3

2

£

£

-

X

P

 using integration of the pdf.

(b) Obtain the CDF, 
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(c) Use your expression in (b) to validate your answer in (a)


Problem 5

A continuous random variable X is uniformly distributed between 0 and 10.

(a) Determine the expression for the probability density function for this random variable.

(b) Determine the following:


i. 
[image: image76.wmf][

]

2

=

X

P


ii. 
[image: image77.wmf][

]

10

2

<

<

X

P


iii. 
[image: image78.wmf][

]

12

2

<

<

X

P
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Problem 6

A probability density function for a continuous random variable X is given by fX(x)=k for 2<x<6 and zero otherwise. 

a. What is k?

b. What is P[2<X<5] ?

c. What is P[X=4] ?

d. Evaluate the cumulative distribution function (CDF) at x=10, i.e., find FX(10).


Problem 7

A random variable X has a probability density function of 

a. Prove that this function is a valid probability density function.

b. Compute P[0<X<0.6].

c. Determine the cumulative distribution function FX(x) for 0.5<x<1.

d. Show how to use your answer in part (c) to obtain your answer in part (b).
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Figure U7.3 CDF for Instrument Measurement Error Example 
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� The statement � EMBED Equation.3  ��� means that the probability of X=x is zero; it does not mean that it is impossible for X=x. This fact is supported by experimental evidence; if we perform the experiment, we will obtain a specific numerical value for the RV, yet the probability of this happening was zero.


� The notion of density is more often associated with volume, as in the density of a solid or a liquid, which is typically given in units of, say, kg/cubic meter. However, we can also speak of density in terms of area (kg/square meter), if the mass is confined to only two dimensions, or we can speak of density in terms of length (kg/m) if the mass is confined to only one dimension.


� For example, one can see that the integral of the PDF given in Figure (U7.2) will be smoother than the PDF itself. In addition, a RV may be of the mixed type such that its PDF is continuous, but with certain, discrete values taking on specific probabilities. For example, customer phone calls to a utility during a power outage typically require a waiting time, since the number of calls is usually greater than the number of customer service representatives. The RV associated with “waiting time” would be continuous, except there is a non-zero probability that the waiting time will be exactly zero since there are times when the number of customer service representatives exceeds the number of calls. Analytical representation of this and other PDFs for mixed RVs requires use of impulse functions, which make them non-smooth.


� In the continuous case, whether we use > and < or � EMBED Equation.3  ��� and � EMBED Equation.3  ��� is immaterial since the probability that the RV will be exactly a certain value is zero.
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