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Module PE.PAS.U20.5 Operating reserve evaluation


Module PE.PAS.U20.5
Operating reserve evaluation
U20.1
Introduction

Module U19 addressed the problem of evaluating generation capacity needs, or, one can say that it addressed the long-term generation planning problem. These are equivalent ways of referring to the same problem, since the decision related to generation capacity has a typical decision horizon (amount of time between the present and the time at which the decision is to be implemented) of years due to the time required for analysis and construction. A typical result of decision-making based on generation planning is to add capacity in the form of additional generation units.

This module addresses the problem of evaluating generation reserve needs, or, equivalently, the short-term unit operation problem; this is the operating analogue to the generation capacity problem. However, the nature of the decision is quite different because here, we do not have the luxury of building new capacity and therefore must rely only on what is currently available. 
There are basically two levels of operating reserve assessment. The first deals with the decision to make additional unit commitment, and the computed indices are said to characterize the unit commitment risk. 

The second deals with how to dispatch the units, and the computed indices are said to characterize the response risk.

U20.2
Unit commitment risk

At any given moment, we can project into the near-term future (a few hours) the amount of demand (including losses), denoted by d(t). 
Clearly, the amount of available generation, denoted by Pa(t), must not be less than that value of demand, so d(t) provides a lower bound for Pa(t), i.e., Pa(t)>d(t). The question is: how much greater should Pa(t) be? This is the operating reserve question, which asks, “How much should we make Pr(t)=Pa(t)-d(t)?” 
Let us for the moment consider computing Pr(t) “right now,”
when all conditions are known with certainty, i.e., at t=0. The identification of d(0) suggests no immediate complications.  But what do we include in Pa(0)? 
The first and most obvious part of Pa(0) is the total amount of loaded generation that is synchronized. Call this PG(0); it would be the sum of the MW set points for all synchronized units and would exactly equal d(0) (again, assuming that d(0) also includes the losses), i.e., PG(0)=d(0).
The second part of Pa(0) is the total amount of unloaded generation that is synchronized and ready to serve additional demand [1]. This is the spinning reserve, denoted as PS(0). Note there are two requirements here. 
· First, the generation must be synchronized, i.e., actually connected to the system. Thus, PS(0) does not include fast-start units that are not synchronized. 
· Second, the generation must be ready to serve additional demand. Thus, PS(0) does not include units that are synchronized but, for some reason, provide no ability to generate additional power not independent of the MW set point. Such units may exist as a result of contractual agreement. 

Thus, we have that Pa(0)=PG(0)+PS(0)=d(0)+P​​S(0). In this case, Pr(0)=Pa(0)-d(0)=PS​​(0), i.e., the operating reserve is exactly the spinning reserve.
Define the total synchronized installed capacity as the total amount of synchronized loaded and unloaded generation available to serve demand, denoted as Ct​ , then PS(0)=Ct-PG(0)=Ct-d(0).
In some cases, it is of interest to include other quantities as available generation Pa, i.e., 

Pa(0)=d(0)+PS(0)+PO(0)


(U20.1)
where PO(0) may include one or more of the following:

· Rapid start units such as gas turbines and hydro plants,

· Emergency assistance from neighboring control areas

· Interruptible loads

in which case we obtain the operating reserve as 
Pr(0)=PS(0)+PO(0)


(U20.2)
If all loaded generation PG(0) were perfectly reliable, then we could allow the present operating reserve to be 0. In addition, if our short-term load forecasting technique was perfectly accurate, and all loaded generation PG(t) were perfectly reliable, then we could allow the future operating reserve to be zero. Thus, we see that non-zero operating reserve is motivated by two things:
· The unreliability of the loaded generation and

· The inaccuracy in the load forecast

The decision to be made is “how much operating reserve to have at any particular moment.” This decision is clearly one that depends on the reliability level together with the cost of achieving that reliability level. 

A common deterministic approach is to maintain the reserve equal to the capacity of the largest unit. However, studies have shown this approach to be inconsistent in that it can lead to:

· over-scheduling: high reliability but very costly operations.

· under-scheduling: low cost operation but with low reliability. 

In this module, we describe a more consistent approach for determining the operating reserve. 
U20.3
Objective of UC-Risk solution procedure
The basic approach we will discuss was originally called the PJM method, named after the developers’ company [2]. 
The objective of this approach rests on the notion of lead time. 
The lead time is the minimum amount of time required to increase the operating reserve by some designated amount, denoted by T. 
Therefore, we assume that, for the next time interval equal to the lead time, it is not possible to increase the operating reserve. 
This amount of time may range from a few minutes to several hours, depending on how the operating reserves are defined and the types of units at the disposal of the operator. For example,

· If we define the operating reserve to include only the spinning reserve, i.e.., Pr(t)=PS(t), then the lead time would normally be the time required to synchronize the fastest-starting unit. If quick-start units such as gas or hydro turbines are available, the lead time in this case would be only a few minutes. 
· If we define the operating reserve to include the spinning reserve and other reserve (including nonsynchronized quick-start units), i.e., Pr(t)=PS(t)+PO(t), then the lead time is dictated by the time required to start the slower units and could be, in this case, several hours.

Thus, our objective is to compute the probability of the available generation Pa(t)=d(t)+PS(t)+PO(t)=d(t)+Pr(t) just satisfying or failing to satisfy the expected demand during the period of time corresponding to the lead time.

U20.4
Capacity outage probabilities

An important issue for operating reserve analysis is that the capacity outage probabilities cannot be long-run. 
The simplest approach to dealing with this issue is to assume that each unit corresponds to a two-state component such that both failure and repair times are exponentially distributed with parameters ( and (, respectively. In this case, we recall from module U16 where we learned that:
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(U20.3)
where U(t) is the time dependent failure probability. But if we consider only the next hour, then it is the case that if the generator fails, it will not be repaired in that time frame. Therefore, we can assume that (=0, in which case:
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(U20.4)

If we then expand in a Taylor series about t=0, we have that:
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If we assume that λt is small, then the higher order terms in the above go to zero, and we have that:
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(U20.5)
If we make t=T (where T is the lead time), then the product U=λT is referred to in the literature as the outage replacement rate (ORR). 
The ORR is the probability that a unit fails during the lead time T.
The ORR is similar to the forced outage rate (FOR) but

· FOR is the “steady-state” probability of being in the down state

· ORR is the probability of failing in the next (small) interval of time t and is therefore dependent on the interval of time chosen.
Thus, whereas FOR is a fixed quantity associated with a unit, the ORR is a time-dependent quantity affected by the value of lead time being considered.
U20.5
Overall UC-risk approach
An important assumption in the approach is that the load is assumed to remain constant throughout the period designated as the lead time. 

With that assumption in mind, the basic PJM approach is described by the following steps:
1. Compute the ORRs for each unit as a function of the desired lead time, i.e., ORRi=λT, where T is the chosen lead time.

2. Compute the capacity outage table for all committed units. This table provides the probabilities associated with having a capacity outage equal to y. Its information may be identified by the probability mass function for the capacity outage random variable Y, i.e., fY(y)=P(Y=y). We use the convolution formula to obtain this; from module U19, it is given as:
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(U20.6)
3. Add another column to the capacity outage table giving the probabilities of having capacity outage greater than or equal to the corresponding capacity outage value. The information of this column may be identified by the cumulative distribution function (cdf) for the capacity outage random variable Y, i.e., FY(y)=P(Y>y) and is related to the pmf according to:
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(U20.7)
(Note that FY(y) is actually the complement of the cdf).
4. Once we have this table, we may compute the LOLP, i.e., the probability of interrupting load, during the desired lead time, as the probability that the capacity outage exceeds the reserve. Denoting the reserve by Pr, then we obtain LOLP simply by reading from the capacity outage table FY(y=Pr).
Example:

Consider a system comprised of three units having capacities and failure rates as given in Table U20.1. Develop the capacity outage table for a lead time of T=1 hour, and then give the corresponding LOLP for a demand of 80 MW.
Table U20.1: Unit Data

	Unit
	Capacity
	( (failures/year)
	( (failures/hour)

	1
	25
	3
	0.000342

	2
	25
	4
	0.000457

	3
	50
	5
	0.000571


We use the convolution formula (U20.6) to obtain the pmf, and we also use (U20.7) to obtain the cdf. Results are provided in Table U20.2.
Table U20.2: Capacity outage table for example

	Capacity outaged, y
	fY(y)
	FY(y)

	y<0
	0
	1.0

	0
	0.99860000000
	0.001400000000

	25
	0.00079832000
	0.000570930000

	50
	0.00057048000
	0.000000456010

	75
	0.00000045592
	0.000000000089

	100
	0.00000000009
	0


It is of interest to compare the plots of fY(y) and FY(y), as in Fig. U20.1. Clearly, these plots are not to scale, but they do illustrate that the pmf is a set of impulses and the cdf is a descending staircase from left to right. This is always the case and reflects the fact that the probability of having outage capacity exceed y must be nonincreasing with y.
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Fig. U20.1: Capacity outage pmf and cdf for example

Unlike the capacity planning example, we do not need to now convolve the capacity outage table with the load model, since we are assuming that the load remain constant within the lead time interval. Thus, the load is deterministic, and all we need know is its value d so that we can then obtain the operating reserve Pr. Then, LOLP=FY(y=Pr). 

For example, consider that we define the operating reserve as the spinning reserve. Additionally, assume that the total synchronized installed capacity is the total amount of loaded and unloaded generation that is available to serve demand, denoted as Ct​ , so that Pr=PS=Ct-PG=Ct-d. 
Referring to our example above, what is the LOLP if the installed capacity is Ct=100 MW and the load is 60 MW? This would be FY(100-60)=FY(40)=P(Y>40)=0.00057093.
What if the load is 80 MW? This would be                            FY(100-80)=FY(20)=P(Y>20)=0.0014.

What if the load is 75 MW? This would be                            FY(100-75)=FY(25)=P(Y>25). Now would this be 0.0014 or 0.00057093? Consider what it means. 
Strictly speaking, we have 75 MW of load, so if we lose the 25 MW unit, we will still be able to serve all of the load. Therefore, we need to go to the next higher outage capacity state in order to find the probability of losing load. Therefore, the LOLP in this case would be 0.00057093, an optimistic value obtained from the rule: “always select the next highest outage capacity state when the reserve equals an outage capacity value.”
However, it may be a better decision to go ahead and increase the reserve at the 75 MW load level. If one defines 0.001 as the maximum acceptable LOLP, then it may be better to take LOLP=0.0014 for this scenario in order to actuate the increase in reserve, a conservative value obtained from the rule: “always select the next lower outage capacity state when the reserve equals an outage capacity value.”
A final question to be addressed in this section is, “what do we do if the LOLP is too high?” Obviously, we need to commit another unit in order to increase the reserves and decrease the reliability. But how do we decide which unit to commit? A merit order approach is the simplest way to do this whereby the units are listed in order of their average cost rate. Then, when the LOLP threshold is not satisfied, the highest (most economic) uncommitted unit in the list is committed, and the LOLP is recomputed.

Alternatively, one may deploy a more advanced unit commitment algorithm that makes use of a LOLP constraint in its formulation.

U20.6
Some sensitivity studies on UC-risk
We look at the sensitivity of two kinds of parameters in this section: lead time and ORR.

U20.6.1
Effect of lead time

A critical decision when performing operating reserve assessment is the lead time, for two reasons:
· The selection of the lead time can affect the amount of reserve, since the longer the lead time selected, the longer time period for bringing up units and the more will be the reserve. This tends to reduce the LOLP for a given load level.

· The selection of the lead time directly affects the ORRs of the units. This tends to increase the LOLP for a given load level.

In addition, the selection of the lead time increases the inaccuracy in the load forecast, an effect which tends to increase the LOLP for a given load level. 

In order to show these effects, we will repeat the above example for three different lead times: T=1 hour, 2 hours, and 3 hours. Since we already have the calculations for T=1 hour, we need only obtain them for the 2 and 3 hour lead time situations. 

Table U20.3 summarizes the unit data for each of the three lead times using the yearly failure rate information of Table U20.1.

Table U20.3: Unit Data for Various Lead Times

	Unit
	Capacity
	ORRs

	
	
	T=1
	T=2
	T=3

	1
	25
	0.000342
	0.000684
	0.0010

	2
	25
	0.000457
	0.000914
	0.0014

	3
	50
	0.000571
	0.00110
	0.0017


Table U20.4 summarizes just the cdf for each lead time.

Table U20.4: cdfs for different lead times

	Capacity outaged, y
	FY(y)

	
	T=1
	T=2
	T=5

	y<0
	1.0
	1.0
	1.0

	0
	.001400000000
	.002700000000
	.006800000000

	25
	.000570930000
	.001100000000
	.002900000000

	50
	.000000456010
	.000001823700
	.000011391000

	75
	.000000000089
	.000000000714
	.000000011157

	100
	0
	0
	0


One observes from Table U20.4 that, when the load is 70 MW, the LOLP is FY(30)=.00057093, .0011, and .0029, respectively for the three increasing lead time values chosen. 

So if we could bring another unit on-line within 1 hour, we could supply the 70 MW with these three units. But if we could not bring another unit on-line for 2 or more hours, using a maximum LOLP=0.001, we would need to commit another unit.
U20.6.2
Effect of ORR

Table U20.5 compares the cdfs for a lead time of 2 hours, as given in Table U20.4, with a cdf computed with the 50 MW thermal unit replaced by a 50 MW hydro unit. Since the capacities are the same, the only reason for expecting a difference in the computations is if the ORR for the 50 MW unit changes. Indeed, it is the case that hydro units tend to be significantly more reliable than thermal units, and it is not inappropriate that the outages per year for the hydro unit be only 1/5 of what it is for the thermal year. Therefore, whereas the 50 MW thermal unit has 5 outages per year, the 50 MW hydro unit has only 1 outage per year. 
Table U20.5: Effect of hydro units
	Capacity outaged, y
	FY(y), T=2

	
	Thermal unit in
	Hydro unit in

	y<0
	1.0
	1.0

	0
	.002700000000
	.001800000000

	25
	.001100000000
	.000228940000

	50
	.000001823700
	.000000364700

	75
	.000000000714
	.000000000143

	100
	0
	0


One notes that the LOLP is lower with the hydro unit in, indicating that hydro units are attractive not only because of their low operating cost but as well because of their higher reliability.

As a final comment, we observe that reliability levels are heavily influenced by failure rates. If units are well-maintained and operated, failure history will indicate low failure rates. If units are not well-maintained and operated, failure history will indicate high failure rates. If operational policy is driven by a risk criterion, then high failure rate units will increase reserve requirement. This cost money. Therefore, it stands to reason that low failure rate units should be rewarded in some way. There is ongoing debate in the industry about this issue.
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