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Module Objectives:
1.
Use analytic expressions for modeling reliability of repairable components.

U12.1

Introduction

I

n this module, we investigate the reliability of a component that can be repaired. In contrast to non-repairable components, modeling of repairable components requires use of a random process. We begin our effort in Section 12.2 by introducing renewal theory for the ordinary renewal process, as it is the fundamental theory on which the simplest model of a repairable component is based. Section 12.3 presents the special case of the Poisson process, based on exponentially distributed inter-failure times. Section 12.4 introduces the alternating renewal process so as to address the case of non-zero repair time. This also provides the opportunity to develop the concept of availability.
Before we proceed, a word about random processes, also called stochastic processes, is in order. A random process is a set of random variables, with the variables ordered in a particular sequence [1]. 
Alternatively, recall that a random variable is a rule for assigning to every outcome γ of an experiment a number x(γ). A random process is a rule for assigning to every γ a function x(t,γ). Thus, a random process is a collection of time functions depending on the parameter γ, or equivalently, a function of t and γ, [2] together with an associated probability description [3]. The entire collection of time functions is considered to be an ensemble. A particular time function within the ensemble may be designated as X(t) and is referred to as a sample function. A specific time expression of a sample function X(t), call it X(t1), is a random variable. Therefore, in a random process, there is a different random variable for each instant of time (although there is usually some relation between two random variables corresponding to two different time instants). Examples of a random process include the following:

· The number of people waiting in a grocery store line
· The number of telephone calls received each hour at a hospital

· The hourly temperature reading from a weather station

Some well-known characterizations of random processes include the random walk, Poisson, Gaussian (white noise, Wiener, Brownian motion), Markov, Diffusion, and Autoregressive moving-average (ARMA). 

There are five different features of a random process which characterize it [1,3]. These are:

· Continuous or discrete index: The index or parameter of the process is normally time, t. It may be either discrete or continuous. If t must be integer, then we say that the process is a discrete-time process. If t is continuous, then we say that the process is a continuous time process. 
· Continuous or discrete state space: The state space is the values assumed by the random variables comprising the process. The state space may also be either discrete or continuous. If the values assumed by the random variables must be integer (and are therefore countable), then we say that the random process is a discrete-state process. If the values assumed by the random variables are continuous, then we say that it is a continuous-state process. It is also possible to have a mixed process, which have both continuous and discrete random variables. 
· Deterministic or nondeterministic process: A deterministic random process is one for which the future values of any sample function can be exactly predicted from a knowledge of the past values. In a nondeterministic random process, future values cannot be exactly predicted from the observed past values. Almost all natural random processes are nondeterministic, because the basic mechanism that generates them is either unobservable or extremely complex. One may think that a “deterministic random process” is a contradiction in terms, but such a view stems from a confusion of what can be random. Consider the following example [3] of a random process where each sample function of the process is of the form X(t)=Acos(ωt+ γ), where A and ω are constants and γ is a random variable with a specified probability distribution. So γ has different values from one sample function to another within the ensemble, but for any one sample function, γ has the same value for all t. In this case, the only random variation is over the ensemble – not with respect to time.
· Stationary or non-stationary process: We define a probability density function (pdf) for each random variable X(ti). If the pdf is the same for all time t, then the random process is stationary, and all moments of the pdf are constant with time. If the pdf changes with time, then the random process is non-stationary, and one or more of the moments of the pdf will also change with time.

· Ergodic or non-ergodic process: A random process is ergodic if all sample functions within the ensemble exhibits the same statistical behavior so that it is possible to determine this statistical behavior by examining only one typical sample function. A random process containing sample functions having different statistics is non-ergodic. All non-stationary random processes are non-ergodic, but it is also possible for stationary processes to be nonergodic. 
In the treatment of this module, we will consider nondeterministic, stationary, ergodic random processes that have a continuous index and a discrete state space (a continuous-time, discrete-state process). We focus on so-called point processes. A random process is a point process if it is comprised of a set of random points on the time axis [2]; a point process is therefore a continuous time random process characterized by events that occur randomly along the time continuum [4]. We typically represent point processes by {N(t), t>0}. Processes that may not be classified as point processes include those for which the events cannot be characterized by numbers on the time axis, e.g., events that require vector or complex characterization. 
A special type of point process is the counting process. A point process is a counting process if it represents the number of events that have occurred until time t. It must satisfy [4]:

1. N(t)>0

2. N(t) is integer valued

3. If s<t, then N(s)<N(t)

4. For s<t, {N(t)-N(s)} is the number of events in the interval (s,t]

Counting processes are important for assessing the reliability of some types of repairable components. Of particular interest are the renewal process and the Poisson process, both of which are counting processes. We investigate them in the following two subsections.
U12.2
Ordinary renewal process
T

he term “renewal” comes from the idea that repair of a failed component results in a renewal of that component. In renewal theory, we typically do not consider the possibility of partial repair or maintenance but rather always assume that when the component fails, the repair will perfectly renew it. This model is applicable for situations where an item is renewed to its original state upon failure, but it is not applicable in the case of a repairable system consisting of several components, if only a failed component is replaced upon failure [5]. In some texts, this situation is referred to as “ideal repair,” since the repair fully restores the component and does so instantly at the moment of failure. A common example of a component that has lifetime subject to a renewal process is a lightbulb, assuming that that we are very diligent about replacing burned bulbs as soon as they go out. Another example is the so-called two-shot fuse [6], sometimes used to protect distribution circuits. Here, a fault will cause failure of the first fuse, which is immediately replaced with a new fuse element by the fuse holding equipment. If the fault is temporary, service is restored with only a very short interruption. If the fault is permanent, the second fuse will burn to isolate the fault. Renewal theory is also heavily used in determining warranties for manufactured items, where replacement of a failed item by warranty is considered to be a renewal.
Non-repairable component reliability is typically concerned with the random variable time to failure. A non-repairable system can fail only once, and a lifetime model such as the Weibull distribution provides the distribution of the time at which such a system fails. [7]. In renewal theory, we must consider, since repair is possible, that there can be multiple failures. Thus, we can investigate the number of failures during a certain time, denoted by N(t), and, in this sense, a renewal process is a counting process. We may also investigate certain temporal quantities related to the counting process. For example, we may define T1, T2, … Tn, as the random variables representing time between the 1rst, 2nd, …, and nth failures, respectively, and the failure just previous.

Definition: [4] A counting process {N(t), t>0} is an ordinary renewal process if

1. N(0)=0

2. Interevent times are independent and identically distributed with an arbitrary distribution. In other words, denote T1 as the time to occurrence of the first event (from t=0) and Tj, j>2 as the time between the (j-1)rst and jth events. Then T1, T2,… must be a sequence of independent and identically distributed (IID) random variables. We will denote the pdf of each Tj as f(t).

3. N(t)=Sup{n: sn<t}, where
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(U12.1)
In the above definition, items 1 and 2 are self-explanatory. Item 3 is saying that N(t) is given by the least upper bound (supremum) on the count, n, such that the summation Sn of the n failure times is less than the evaluation time, t. Said more simply, N(t) counts the number of failures that occur before t. The choice is made here to say this in the rather complex form of item 3 because, in so doing, item 3 introduces an important random variable, Sn, which is total time until the nth failure (which is the same as the total time until the nth renewal).
Let’s consider [1] the random variable T1, which is the time to the first failure. Since each of the Tj are IID, each with pdf f(t), then the pdf of S1=T1 is just f1(t)=f(t). Now what is the pdf of S2=T1+T2, the total time to the second failure? Denote it by f2(t). Thus, the probability of the second failure occurring in any time (t is given by f2(t)(t. It is a joint probability density the integration of which gives P(A(B) where A is the event first failure and B is the event second failure. 
But P(A(B)=P(A)P(B) for independent events. Then we can also express the right hand side of this probability. Consider that

· the second failure occurs at time t,

· the first failure occurs in the neighborhood of 0+((=(. 

It is required, of course, that (<t; then the duration of the second lifetime, between the first and second failures, is t-(. Then,

· the probability of the first failure (event A) occurring in the interval (0, (() is f1(()((,

· the probability of the second failure (event B) occurring in the interval ((, t) can be obtained as if it were the first failure and we wanted to get its probability of occurring in the interval (0,t-(). This would be f1(t-()(t.

Thus, we have (since the two events are independent) that 
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(U12.2)
Dividing both sides by (t, we get
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(U12.3)

In the limit as (((0, we have that



[image: image4.wmf]t

t

t

d

t

f

f

t

f

t

ò

-

=

0

1

1

2

)

(

 

)

(

)

(




(U12.4)

The operation of (U12.4) is recognized as convolution. This is consistent with the conclusion derived from probability theory that the pdf of the sum of two random variables is the convolution of their individual pdfs, since f2(t) is given the pdf for S2=T1+T2, and T1 and T2 both have distributions of f(t)=f1(t).

Likewise, we may find the pdf of S3=T1+T2+T3=S2+T3, which is the convolution of the pdf for S2 and the pdf for T1, f2(t) and f(t)=f1(t), respectively. Continuing in this way, we deduce that the failure time pdf for the rth failure, is
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(U12.5)

So, (U12.5), which is an r-fold convolution of f1(t), indicates that to obtain the failure time pdf for the rth failure, we convolve f1 with itself to get f2 according to (U12.4), and then f2 with f1 to get f3, and then f3 with f1 to get f4, and so on, until we obtain fr. Alternatively, one may use LaPlace transforms. Recalling that the LaPlace transform of two convolved functions is the product of their individual LaPlace transforms, we have that
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(U12.6)

where we use the tilde over the lower case “f” to distinguish the LaPlace transform of the function from the time-domain function. Yet, 
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(U12.7)

Substituting (U12.7) into (U12.6), we have:
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(U12.8)

Equation (U12.8) indicates that the LaPlace transform of the pdf for Sr (do not confuse the lower-case LaPlace variable with Sr) , the time to the rth failure (or rth renewal), is just the LaPlace transform of the pdf for S1=T1, the time to the first failure raised to the rth power. 
We now introduce the renewal function K(t), defined as the expectation of N(t), K(t)=E[N(t)], implying that it is the mean value of N(t) in the interval (0,t). The meaning of “the mean value of N(t)” is the average of the values for N(t) obtained when the ordinary renewal process is truncated at time t and repeated over and over without limit [8]. Therefore, the mean value of the number of renewals in the interval (t1,t2) is K(t2)-K(t1). Dividing by the time increment Δt=t2-t1, leads to the definition of the renewal density k(t), 


[image: image9.wmf]dt

t

dK

t

t

K

t

t

K

t

k

t

)

(

)

(

)

(

lim

)

(

0

=

D

-

D

+

=

®

D




(U12.9)

so that for small Δt, we have that:
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(U12.10)
Note that the numerator is the E[N(t+Δt)]-E[N(t)], which is the expected number of renewals in the interval t+Δt. Now, consider choosing Δt so that the numerator is exactly 1. Then it follows that the numerator would be 0.5 if we choose half the interval, 0.333 if we choose a third of it, and so on. Thus we can see that, choosing Δt small enough so that the occurrence of two or more renewals during Δt has negligible probability next to that of a single one, the numerator of (U12.10) gives the probability of a renewal in the interval (t, t+Δt). As a result, we can see that, for Δt small, k(t) becomes the probability density of renewals occurring during the Δt period following time t; that is,
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The renewal density, then, can be interpreted as the probability that a failure (or a renewal) occurs in the interval (t, t+Δt), if the interval is small. This interpretation is distinguished from that of the pdf of the rth failure, fr(t), in that k(t) addresses any failure and not just the specific rth failure. It is based on this interpretation that we call k(t) a renewal density. From (U12.9) and (U12.10), we might better call it a renewal rate.
Since the probability of observing a failure in a time interval (t, t+Δt), with Δt small, is just the sum of the probabilities of observing the first, second, …., ∞ failures, k(t) may be expressed as:
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(U12.11)

We can get to this in another way. Recall that K(t) is the expected values of the number of renewals in time (0,t). Recall also that N(t) is the number of renewals in time (0,t). Then K(t)=E[N(t)], as we had before, or, using the definition of expected values for discrete random variables,
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(U12.11a)
where n is the values that the random variable N(t) can take. The probability Pr[N(t)=n] can be obtained as the difference between the probability that N(t)<n and that N(t)<n-1, i.e., 
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(U12.11b)

Now we note: 

( The probability that the count at time t, N(t), is less than equal to n, is the same as the probability that the total time to the n th renewal, Sn is less than or equal to t, and this is the same as the probability that the total time to the (n+1)th renewal is greater than or equal to t. Thus we see that 
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(U12.11c)
Likewise,

( The probability that the count at time t, N(t), is less than equal to n-1, is the same as the probability that the total time to the (n-1) th renewal, Sn-1 is less than or equal to t, and this is the same that the probability that the total time to the nth renewal is greater than or equal to t. Thus we see that 
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(U12.11d)

Substituting (U12.11c) and (U12.11d) into U(U12.11b), we have that:
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(U12.11e)

We recognize the terms on the right hand side as complements of the cumulative distribution functions on the time to the n+1 and n renewals, respectively, i.e., 1-Fn(t) and 1-Fn+1(t). Thus,
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(U12.11f)
Substituting (U12.11f) into (U12.11a), we get
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(U12 .11g)
Breaking up the summation:
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(U12.11h)

Extracting the first term from the first summation and adjusting indices within the summation,
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(U12.11i)

Distributing Fn+1(t) through the factor (n+1) in the first summation yields
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(U12.11j)

Breaking up the first summation:
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(U12.11k)

And we see that the second and fourth term can be eliminated to yield:
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(U12.11l)

Differentiating both sides yields: 
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which is eq. (U12.11). 
Figure U12.1 [1] illustrates the relationship between the various pdfs fj(t), where, according to (U12.5), each fj(t) is the convolution of the fj-1​(t) and f1(t). Here, we observe that each successive pdf has a mean that is moved out further in time, illustrating the intuitive notion that the mean time to the rth failure gets larger as r gets larger. In fact, the mean of fr(t) can be shown to be rM where M is the mean of f1(t), and the steady-state value of k(t), for large t, can be shown to be 1/M, as shown in [9] and also in Example U12.2 below. Note that M is just the mean time to failure (MTTF).
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Fig. U12.1: Illustration of renewal density and densities for rth failure [1]
A note of caution: from Fig. U12.1, one quickly concludes that k(t) is not a probability density function, since it does not integrate to 1.0. The renewal density k(t) may only be considered to be a probability density for small increments of time Δt such that the probability of a 2nd, 3rd, ….renewal is negligible. If Δt is large enough so that the probability of a 2nd, 3rd, … renewal is non-negligible, then the logic following (U12.10) above does not hold and k(t) cannot be properly interpreted as a probability density function but rather as the expected number of renewals per unit time.
Since k(t) is related to the various fj(t) according to (U12.11) and the various fj(t) are all related to f1(t) according to (U12.5), it is reasonable to expect that we should be able to obtain k(t) in terms of f1(t). This is done as follows.

We rewrite (U12.11) by pulling f1(t) from the summation according to 
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(U12.12)
But from (U12.5), we have:
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(U12.13)

Substitution of (U12.12) into (U12.13) results in 
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(U12.14)
Interchanging the order of summation and integration, we have
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(U12.15)

Note that f1(t-τ) on the right-hand-side of (U12.15) is a constant with respect to the summation, a fact that we emphasize with a small change in expression.
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(U12.16)

But by (U12.11), we may replace the summation within the square brackets to obtain
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(U12.17)
Equation (U12.17) is known as the renewal density equation [10]. 
The integral in (U12.17) is recognized as convolution. Taking the LaPlace transform results in
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Solving (U12.18) for k(s) results in
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(U12.19)

where f1(t)=f(t), i.e., the pdf on the first time to failure T1 is the same as the pdf on all time between failures T2, T3, …(not to be confused with the pdf on the total time to the n-th failure, denoted above by fn(t)). If, in an ordinary renewal process, we can obtain the pdf on the first time to failure, then LaPlace transforms allow us to efficiently obtain the renewal density according to (U12.19).

Example U12.1 [10]
A component that exhibits constant failure rate is replaced upon failure by an identical component. The pdf of the failure-time distribution is f(t)=λe-λt. What is the expected number of failures during the interval (0,t)?

Taking the LaPlace transform of the pdf results in
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. Then by (U12.17), the LaPlace transform of the renewal density is
[image: image36.wmf]s

s

s

s

s

k

l

l

l

l

l

l

l

l

=

-

+

=

+

-

+

=

1

)

(

~

. Taking the inverse LaPlace transform, we get 
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, t>0, implying that the time rate of change in the expected number of renewals is constant with time. By (U12.9), we have K(t)=λt, t>0, i.e., the expected number of failures in (0,t) is λt.

An important attribute associated with repairable components is the mean time between failures (MTBF). We have seen in module U11 that the mean time to failure (MTTF) is an important attribute for non-repairable components. 

Clearly, the MTBF has no relevance to non-repairable components since they mail fail only once. Yet, repairable components may fail the first time, so that the MTTF is a relevant quantity, and they may also fail again and again, making the MTBF a relevant quantity as well. But, for repairable systems, how is MTBF related to MTTF? 

Recall that the MTTF is given by
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(U12.20)
where f(t) is the pdf on failure time; in the case of the repairable component, it is the pdf for first failure time. But recall that for the ordinary renewal process, all times between failures are IID, so that f(t) is also the pdf on any of the time between failures. Therefore, MTBF=MTTF for the ordinary renewal process.
U12.3
Poisson process

The Poisson process is a frequently used model for representing components under ideal repair. In fact, the Poisson process is a special case of the renewal process. Whereas the renewal process requires interevent times that are IID with arbitrary distribution, the Poisson process requires interevent times that are IID with an exponential distribution. 
Before proceeding, it is suggested that to review the material on Poisson and exponential distributions contained in Module U10.

Reference [4] provides several different definitions of a stationary Poisson process, two of which are repeated below.
Definition 1: A counting process {N(t), t>0} is a Poisson process if:

1. N(0)=0

2. The process has independent increments. This means that, for all choices of 0<t1<t2<t3<…<tn, the (n-1) random variables {N(t2)-N(t1)}, {N(t3)-N(t2)},…, {N(tn)-N(tn-1)} are independent.  

3. The number of events in any interval of length t is distributed according to Poisson distribution with parameter λt, i.e., 
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(U12.21)
Definition 2: For a counting process, let T1 denote the time instant of the first event occurrence, and for j>2, let Tj denote the time interval between the (j-1) and jth events. The counting process is a stationary Poisson process with parameter λt if the sequence Tj, j>1, are independent and identically distributed (IID) exponential random variables with mean (1/λ), such that 
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The above two definitions are provided because they emphasize two equivalent and critical features of the Poisson process. Whereas definition 1 emphasizes that the distribution associated with the number of events (that it be Poisson), definition 2 emphasizes the distribution associated with the time interval between events (that it be exponential). 
U12.4
Alternating renewal process 
Assume there are two types of components with respective failure times {Ta1,Ta2, …} and {Tb1,Tb2,…} and all failure times are statistically independent. A process whereby, on failure, a component is replaced by one of the other type is called an alternating renewal process [11]. Fig. U12.2 illustrates this idea.
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Fig. U12.2: Illustration of alternating renewal process [11]
An example of an alternating renewal process is a machine that is subject to unavailability while being repaired, so there is an alternating sequence of “up” and “down” times, representing two sequences of independent random variables. Fig. U12.3 illustrates this idea.
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Fig. U12.3: An alternating renewal process for a component with up and down times
It is important to realize the difference between the process illustrated in Fig. U12.3 and the processes discussed in Section U12.2 (ordinary renewal) and U12.3 (Poisson). In the latter cases, the repair was assumed to be ideal, i.e., it completely restored the component, and it did so instantly. Here, Fig. U12.3 illustrates that, although we still consider a repair that fully restores the component, it does not do so instantly, i.e., it requires some finite time. Of course, in reality, no repair can be done instantly; however, there are many processes where the repair time (or down time) is very short in comparison with the up time so that instant repair is a reasonable approximation to the actual process.
In this case, we have two different densities. Let’s denote the pdf associated with the failure time Ta as w(t) and the pdf associated with the repair time Tb as g(t). Now consider the pdf associated with the total (cycle) time T=Ta+Tb, which we denote by f(t); it is the underlying pdf of the renewal process and is equivalent to f1(t) . Because the random variable T is the sum of the random variables Ta and Tb, we know from module U13 that the pdf of T is the convolution of the pdfs of Ta and Tb according to:
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Using LaPlace transforms, this is
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(U12.23)
Now we need to make an important observation. The discussion in Section 12.2 in regards to the ordinary renewal theory began from the proposition that we know the pdf on the time to failure. Review of this discussion will result in the conclusion that all results that were drawn from it are also applicable if we replace the time to failure with the total (cycle) time T. Thus, recalling (U12.19), 
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Substitution of (U12.23) into (U12.24) results in
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(U12.25)

Equation (U12.25) is useful in deriving the availability.

Availability, denoted by A(t), is defined as the probability that the component is properly functioning at time t [10]. For non-repairable components, A(t)=R(t), that is, the probability that the component is properly functioning at time t is exactly R(t)=Pr(T>t). For repairable components with instant renewal, the probability that the component is properly functioning at time t is 1.0 since it is renewed as soon as it fails. However, if the repair is not instant, then it is possible at a given time that the component is not functioning; A(t) in this case is more challenging. 
So there are two possible ways the component may be functioning at a given time t.

· Event A: The component has not failed during the interval (0,t). Call this event A. The probability of this case is simply Pr(A)=R(t).

· Event B: The component

· has failed some time during the interval (0,t), say, at τ such that 0<τ<t (call this event B1). The probability P(B1)=R(t-τ).

· has been renewed during the time period between τ and t (call this event B2). The probability P(B2)=k(τ)Δτ. 
Now one way that B can happen is Pr(B1)Pr(B2)=R(t-τ)k(τ)Δτ, but τ may range between 0 and t, providing an infinite number of ways B can happen, which we can account for through integration over τ from 0 to t.
Now A and B are mutually exclusive events, so that P(AUB)=P(A)+P(B), resulting in
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Taking LaPlace transforms, we obtain:
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Substitution of (U12.25) into (U12.27) results in
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 (U12.28)
But R(t) and w(t) are related through the CDF Q(t), that is



[image: image50.wmf])

(

1

)

(

t

Q

t

R

-

=









(U12.29)



[image: image51.wmf]ò

¥

-

=

t

d

w

t

Q

t

t

)

(

)

(








(U12.30)

where the (U12.30) is simply the relation between a CDF and its pdf. Substituting (U12.30) into (U12.29) and taking LaPace transforms results in:
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Substitution of (U12.31) into (U12.28) results in
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(U12.32)

Example U12.2 [10]

Consider a component that has both failure time and repair time that is exponentially distributed according to w(t)=λe-λt and g(t)=µe-µt. Find expressions for the renewal density, the availability, and the steady-state values of both.
According to (U12.32), we need the LaPlace transforms of w(t) and g(t), which are easily found in any table of LaPlace transforms:
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Renewal density: 

Substitution of 
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Applying partial fraction expansion, we obtain:
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Tables of LaPlace transforms give inverse LaPlace transform of the above expression, which is the renewal density, as:


[image: image60.wmf]t

e

t

k

)

(

)

(

m

l

m

l

lm

m

l

lm

+

-

+

-

+

=


The steady-state renewal density is then obtained from the limit as t(∞ of k(t), which is clearly
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Availability: 

Substitution of 
[image: image62.wmf])

(

~

s

w

 and 
[image: image63.wmf])

(

~

s

g

 into (U12.32) results in:


[image: image64.wmf])

(

)

)(

(

]

1

[

1

)

(

~

m

l

m

lm

m

l

m

m

lm

l

m

m

l

l

l

l

+

+

+

=

-

+

+

+

=

ú

û

ù

ê

ë

é

+

-

+

=

+

+

-

+

-

=

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

A


Applying partial fraction expansion, we obtain:
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Any table of LaPlace transforms will give inverse LaPlace transform of the above expression, which is the availability, as:
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The steady-state availability is then obtained from the limit as t(∞ of A(t), which is clearly
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The result of Example U12.2 says that, when both the failure time and the repair time are exponentially distributed, 
· the steady-state renewal density is given by the ratio of the product failure and repair rates (λμ) to the sum of failure and repair rates (μ+λ). 
· the steady-state availability is given by the ratio of the repair rate (µ) to the sum of failure and repair rates (μ+λ). 

To interpret these results in another way, recall from Example U11.2 in Module 11 that the MTTF for an exponentially distributed failure time is just 1/λ, where λ is the failure rate. This is the mean time to the first failure, assuming the component is working at time 0. It can be shown in the same way that the mean time to repair (MTTR) for an exponentially distributed repair time is just 1/μ, where µ is the repair rate. Making the appropriate substitutions into the steady-state renewal density result of Example U12.2, we find that the steady-state renewal density for a component with exponentially distributed failure and repair times is given by:


[image: image68.wmf]MTTF

MTTR

MTTR

MTTF

MMTR

MMTF

k

+

=

+

=

1

/

1

/

1

)

/

1

)(

/

1

(




(U12.33a)

Thus, the steady-state value of k(t) is the inverse of the mean cycle time of the renewal process. If the repair time is zero, then the steady-state value of k(t) is the inverse of the mean time to failure, which is λ, an observation that was already made in reference to Fig. U12.1 and in Example U12.1.
Making the appropriate substitutions (MTTF=1/λ and MTTR=1/μ) into the steady-state availability result of Example U12.2, we find that the steady-state availability for a component with exponentially distributed failure and repair times is given by:
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(U12.33b)
It is reasonable at this point to inquire about the availability for the case of a component having failure time and/or repair time that is not exponentially distributed. To begin, we apply the final value theorem to (U12.32), which enables us to get the steady-state value for the time domain expression from its LaPlace transform. 
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Now we return to the definition of the LaPlace transform, which is, when applied to w(t)
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(U12.35)

When s is small, we can approximate e-st=1-st. In this case, (U12.35) becomes
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(U12.36)
The first integral on the right-hand-side of (U12.36) is just 1.0, because it is the integral of a pdf over its entire non-zero range of values. The second integral is s×E[w(t)], which is just s×MTTF. Thus, (U12.36) becomes
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Similarly, 



[image: image74.wmf])

(

1

)

(

~

MTTR

s

s

g

-

=








(U12.38)

Substitution of (U12.37) and (U12.38) into (U12.34) results in
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(U12.39)
The result of (U12.39) agrees with that of (U12.33). We see that this result is independent of the type of distribution associated with time to failure and time to repair.
Final notes: 
1. Chapter 7 of [12] has some interesting and useful material on renewal processes that was not noticed until all of the above had been completed.

2. Chapter 11 of [8] shows how to treat a system of components each of which is characterized by a renewal process. This information was not included in the above but should be to connect it more intimately with the material on system reliability.


Example U12.3

Problems


Problem 1

Problem 2
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