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Module Objectives:
1.
Use analytic expressions for modeling component reliability.

U11.1

Introduction

I

n this module, we focus on the analytical methods of modeling the reliability of a single non-repairable component that may fail. This is in contrast to analytical modeling of a system of components any one of which may fail. A component may be comprised of multiple parts, but it must be possible to view it as a single, self-contained unit for the purposes of the reliability study. We begin with some formal definitions of reliability given in the literature.

From [1],

Reliability is the probability of a device or system performing its function adequately, for the period of time intended, under the operating conditions intended.

From [2], 

Reliability is the probability that a product or service will operate properly for a specified period of time (design life) under the design operating conditions (such as temperature or voltage) without failure.

From [3],

Reliability is the ability of an item to perform a required function under stated conditions for a stated period of time.

From [4],


Reliability is the duration or probability of failure-free performance under stated condition.

These definitions, for the most part, pertain to mission-oriented reliability, i.e., the component or system must continue to function without failure for the duration of its mission. Examples of mission-oriented systems include [6] a commercial airplane during its flight and a protection system once it is activated. (One should note that although both of these examples illustrate systems that must continue to function without failure for the duration of the mission, they have a significant difference in that the airplane is known to be operable as it starts its mission, whereas the protection system may not be.)

Power systems, on the other hand, are considered to be continuously operated systems. Continuously operated systems are those in which a number of down states are tolerable provided they do not occur too frequently or last too long [6]; continuously operated systems are repairable. One definition for power system reliability is [5]

Power system reliability is the ability to provide an adequate supply of electrical energy. 

Reference [5] continues to say that, “The concept of power system reliability, however, is extremely broad and covers all aspects of the ability of the system to satisfy the consumer requirements. The term reliability has a very wide range of meanings and cannot be associated with a single specific definition such as that often used in the mission-oriented sense. It is therefore necessary to recognize its extreme generality and to use it to indicate, in a general rather than specific sense, the overall ability of the system to perform its function.” Reference [5] then goes on to describe power system reliability in terms of adequacy and security, as is typical in the power system reliability literature. These terms, and their assessment, will be discussed at length in other modules.

Despite the fact that the mission-oriented definitions do not capture the global sense of power system reliability, it is essential for power system reliability engineers to be conversant with their use and related analytical developments, as they are often applicable to the assessment of individual power system components. For this reason, then, we proceed with this development in this module.

An important distinction between different types of components is whether it is repairable or not. We proceed in the remainder of this section to describe modeling techniques for nonrepairable components. Module U12 describes modeling techniques for repairable components. The organization of some of the material contained herein is patterned after that of Chapter 2 in [1], but much of the treatment varies considerably, so that one will find the reading of both sets of material to be rewarding in a complementary fashion.

U10.2
Fundamentals of non-repairable components

S

ome components can be considered non-repairable, i.e., they last until they fail, and then they are instantly replaced by a new component, i.e, the component is completely renewed. For this case, let T be a random variable representing the time to failure of a component, and let f(t) denote the probability density function (pdf) for T. The pdf f(t) is often called the failure density function. Then cumulative distribution function (cdf) corresponding to f(t) is denoted by Q(t). It is related to f(t) as any cdf is related to its pdf, 
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(U11.1)

Since Q(t) gives the probability that the component will fail sometime up to time t, it is really a measure of the component unreliability. Its complement 1-Q(t), which gives the probability that the component will not fail up to time t, is the measure of the component reliability. This function, often referred to as the survivor function, is denoted by R(t) and given by
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(U11.2)

Taking the derivative of (U11.2), we obtain
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Example U11.1 [8]

A component has a reliability function of 
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2

2

)

(

t

t

R

+

=

, where t is measured in years. Determine the length of guarantee period such that the probability of failure within that period will be 0.01. 

The probability of failure within that period is Q(t)=Pr(T>t)=1-R(t). We desire to find t such that Q(t)=0.01.
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Thus, if the manufacturer wants to replace no more than 1% of its components, the warranty should be less than 0.272 years or about 3 months.


One of the most heavily cited quantities characterizing component reliability is the mean time to failure (MTTF). The MTTF indicates the expected time for which the item will perform its function successfully, sometimes referred to as the component expected life. This is nothing more than an expectation, given by
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(U11.4)

From (U11.3), f(t) is the negative derivative of R(t); thus, (U11.4) may be written as
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(U11.5)

Integrating (U11.5) by parts,
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(U11.6)

The conditional reliability function, denoted by R(tc|t), is the probability that the component will survive for some time tc given that it has survived for time t. Recalling the basic relation for conditional probabilities, i.e., Pr(A|B)=Pr(A(B)/Pr(B), we can write the conditional reliability function as:
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(U11.7a)

Likewise, we can obtain the conditional pdf, denoted by f(tc|t), which is the pdf on the failure time T given that the component has survived until time t, is given by
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(U11.7b)

The mean residual life, MRL, is then the expected remain life given the component has survived up until time t and is given by
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(U11.7c)

where the integration is with respect to t​c.


Example U11.2
A device time to failure T follows the exponential distribution. (a) What is the device mean time to failure (MTTF)? (b) What is the device mean residual life (MRL) given that it has survived until time tc ?
a. The exponential distribution is f(t)=λe-λt. From (U11.4), the MMTF is  
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b. From (U11.2), we obtain the survivor function as 
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 so that the conditional pdf is given by: 
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 and the MRL is then computed as 
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Comparison of the solution to (a) with the solution to (b) indicates that the mean time to failure for a component having an exponentially distributed failure time is independent of time.

U11.3
The hazard function

Consider a time interval (t1,t2) such that t2>t1. The difference in component reliability levels at these two times is given by
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(U11.8)

The integral of the pdf from t1 to t2 gives the probability of the random variable T residing in (t1,t2), as indicated on the right-hand-side of (U11.7). Therefore, (U11.7) expresses that:

The probability of failure of a component in (t1,t2) is given by the difference in component reliability levels at these two times.

Following the logic leading to (U11.7), the conditional probability that a failure occurs in the interval (t1,t2) given that no failure has occurred prior to t1, is:
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(U11.9)

When normalized by the time interval t2-t1, we obtain the failure rate for the specified time interval [2],
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(U11.10)

which is the probability that a failure per unit time occurs in the interval (t1,t2) given that no failure has occurred prior to t1. If we replace t1 by t and t2 by t+(t, then (U11.10) becomes
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The expression of (U11.11) provides the basis for the hazard function, h(t) (sometimes also called the failure rate function), given by
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(U11.12a)

which is equivalent to
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(U11.12b)
Using (U11.12a) and (U11.3), we have
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(U11.13)

The hazard function may be equivalently thought of in the following ways:

· the failure rate in the time interval t+(t as (t(0, or
· the instantaneous failure rate at time t, or
· the probability that the component experiences a failure per unit of time at time t,

conditioned on having no failure in the interval (0,t), i.e., that the component is still working at time t.

The quantity h(t)dt [9] is the probability that the component fails during the interval [t,t+dt] given that the component was working at time zero and survived to time t. This assumes the continuation of the normal state to time t, i.e., no failure has occurred in the interval [0,t]. Clearly, the hazard rate is a conditional probability, which is conditioned on the fact that the component works to time t.

Solving for f(t) in (U11.3) and (U11.13) and equating the resulting expressions provides
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Integrating both sides, 
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(U11.15)

so that
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(U11.16)

Reference [2], chapter 1, provides some practical illustrations of the hazard function.


Example U11.3
Continuing example U11.2, determine the hazard function for a device having an exponentially distributed time to failure T. 

From (U11.13), we have that 
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It is only necessary to know one of the functions h(t), f(t), R(t) in order to be able to deduce the other two, as illustrated in Fig. (U11.1) [8].
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Fig. U11.1: Relationships between h(t), f(t), and R(t) [8]

Note that all of the relations in Fig. U11.1 can be developed from (U11.3) and (U11.13).
U11.4
Hazard function shapes

Plots of hazard functions, which illustrates failure rate as a function of time, typically exhibit some combination of three basic shapes.

· Decreasing with time: This characteristic indicates that the component reliability improves with time. No component exhibits this characteristic for its entire lifetime, but many components do during the early portion of the lifetime due to problems in design, manufacture, construction, or installation. This time period is often referred to as burn-in, infant mortality, debugging, shake-down, or early-failure. The simplest hazard function for decreasing failure rate is
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(U11.17)
and we can obtain R(t) and then f(t) by applying (U11.16) and (U11.13).

· Constant with time: This characteristic indicates that the component reliability remains the same throughout time, i.e., the component does not deteriorate, nor does it improve. Many electronic components that are not really subject to any deterioration process, such as transistors, resistors, capacitors, and integrated circuits, exhibit constant failure rate for most of their lifetime. In other components, it may be that the constant failure rate arises from complex underlying interaction of several physical processes affecting the component. In addition, components subject to deterioration processes that are not influential until the latter portions of their lifetimes may also exhibit constant failure rate during the intermediate portions of their lifetimes. The time period corresponding to constant hazard function is called the chance period, since all equal time intervals within the period have equal failure probabilities, or equal chance of incurring a failure. One common cause of failure during the chance period is overstress. Overstress failures may be classified by failure mechanism as follows: brittle fracture, ductile fracture, yield, buckling, large elastic deformation, and interfacial deadhesion. A detailed description of each of these failure mechanisms is given in [7], Chapter 6. The hazard function for constant failure rate is given by 
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(U11.18)

as shown in Example U11.2. It may also be shown by applying (U11.16) and (U11.13) [2].
· Increasing with time: This characteristic indicates that the component reliability degrades with time. Most components exhibit this characteristic during at least some period of their lifetime. It results from some type of complex aging phenomena. It is referred to as wear-out or old-age. Wear-out failures may also be classified by failure mechanism as follows: wear, corrosion, dendritic growth, interdiffusion, fatigue crack propagation, diffusion, radiation, fatigue crack initiation, and creep. A detailed description of each of these failure mechanisms is given in [7], Chapter 6. The simplest hazard function for increasing failure rate is when failure rate increases linearly with time according to:
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which characterizes a Rayleigh distributed failure time, proven by applying (U11.16) and (U11.13) [2].

Overstress and wear-out failure mechanisms may also be classified by the nature of the failure mode, as given in what follows [7]:

A representative hazard function that characterizes many components and utilizes all three basic shapes described above is the so-called bathtub curve, illustrated in Fig. U11.2.
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Fig. U11.2: The Bathtub Curve

In addition to the three basic shapes and the bathtub curve, there exist components exhibiting hazard functions with other types of shapes. Reference [7] summarizes the basic and other shapes as follows:

· Type A: Nonincreasing (includes monotonically decreasing)

· Type B: Nondecreasing (includes monotonically increasing)

· Type C: Constant

· Type D: Bathtub

· Type E: Inverted bathtub (also called unimodal)

· Type F: Decreasing followed by unimodal

· Type G: Unimodal followed by increasing

· Type H: Unimodal with h(t) > 0 as t(0

· Type J: Bimodal with h(t)>0 as t((
· Type K: Bimodal with h(t)(0 as t((
· Type L: Bimodal with h(t)( ( as t((
A unimodal characteristic has one “peak” (with either zero or one “valley”) and a bimodal characteristic has two “peaks” (with either one or two “valleys”). Illustrations of the various shapes are given in [7]. 

Analytic modeling of the type A-C shapes are facilitated using the exponential distribution or various forms of the Weibull distribution, as indicated in the first two rows and first three columns of Table U11.1.

Table U11.1: Distribution functions capable of modeling hazard function shape types

	Distribution
	Type

	
	A
	B
	C
	D
	E
	F
	H
	I
	J
	K
	L

	Exponential
	
	
	Y
	
	
	
	
	
	
	
	

	Weibull
	Y
	Y
	Y
	
	
	
	
	
	
	
	

	Mixture Weibull
	Y
	Y
	Y
	Y
	
	Y
	Y
	Y
	Y
	Y
	Y

	Competing risk
	Y
	Y
	
	
	Y
	
	
	
	
	
	

	Multiplicative
	Y
	Y
	
	
	Y
	
	Y
	
	
	
	

	Sectional
	Y
	Y
	
	Y
	Y
	
	
	
	
	
	

	Exponentiated Weibull
	Y
	Y
	Y
	Y
	Y
	
	
	
	
	
	


The last 5 rows of Table U11.1 indicate composite distributions. These are distributions that are comprised of two or more basic distributions. For example, the mixture Weibull is comprised two or three Weibull distributions each of which have well-tuned and unique scale and shape parameters. The mixture Weibull is very powerful in enabling capture of a large number of hazard function shapes. Discussion of the competing risk, multiplicative, sectional, and exponentiated Weibull distributions can be found in [7], Chapter 4. Reference [7] indicates that composite distributions are often necessary for approximating hazard functions when “the failure of a component is due to one of many different failure modes. As a result, the failure date of such components are complex and the empirical plots of the density and failure rates exhibit shapes that cannot be adequately modeled….” by basic distribution functions.

In developing a hazard function for a particular application, it is of course best if failure data is available for the component for which a hazard function is desired. If this is the case, then each of the seven rows in Table U11.1 constitutes a model “family” [8]. This family involves parameters which require estimation based on the available data, making this method of modeling parametric since the model family is chosen first and then the associated parameters selected to fit the model to the data. The alternative, non-parametric or empirical estimation, makes no assumption about the underlying distribution and determines the hazard function based purely on the data.
U11.5
Components with preventive maintenance

A component may be classified according to whether or not it is repairable, and according to whether or not it is maintainable. Repairability refers to the ability of the component to be renewed after it has failed. Maintainability refers to the ability of the component to be renewed while it is operable. A non-repairable component is a component [9] that cannot be repaired, where repair is not economical or where the component lifetime up to the time of catastrophic failure is the point of interest; such components are discarded and replaced when they fail. This is appropriate for many low-cost items such as fuses, light bulbs, transistors, and contacts. Repairable items are not replaced following a failure but are rather repaired and put into operation again [10].

A maintainable component is one for which the hazard function increases with time. If the component hazard function decreases with time, then a maintenance task tactually degrades its reliability. If the component hazard function is constant, then its failure rate never changes and it is impossible to have any effect, good or bad, through maintenance. Because repair takes place only after failure, it cannot really be scheduled a-priori. Maintenance, on the other hand, can be.

A component may be nonrepairable but maintainable, i.e., if it fails, it cannot be renewed, but something can be done to delay its failure. An old automobile is of this nature, since we may regularly change its oil and thus delay engine failure, but once the engine fails, it is not economic to repair, and we simply send it to the junkyard. This maintenance is called preventive maintenance where the component is taken out of service on a regular schedule for inspection, cleaning, and replacement of parts. We desire to determine what such maintenance does to the pdf and the hazard function. In the remainder of this section, we follow a development similar to [1], Section 2.4. We make the following assumptions:

· A maintenance task takes no time.

· A maintenance task restores the component to the “brand new” condition.

· Maintenance is done at periodic intervals of time given by Tm.

· The component hazard function is monotonically increasing with time. 

These are clearly extremes but serve well to facilitate the mathematics leading to some useful conclusions regarding preventive maintenance.

From (U11.2), we see that R(t)=Pr(T>t), where T is the random variable representing the time to failure. Thus, the probability that the component survives past the maintenance interval is R(Tm)=Pr(T>Tm). Denote h(t) as the hazard function for the component without maintenance and h*(t) as the hazard function for the component with maintenance. Likewise, denote f(t) as the failure time pdf for the component without maintenance and f*(t) the failure time pdf for the component with maintenance. Consider a time period covering several maintenance intervals, e.g., (0, 4Tm). During the interval (0,Tm), there is no maintenance. At t=Tm, the maintenance is performed and the resulting component is returned to its “brand new” condition, so that h*(t)=h(t-Tm) for Tm<t<2Tm, i.e., the hazard function from t=Tm to t=2Tm is identical to the hazard function from t=0 to t=Tm, except that it is shifted in time by Tm. In fact, at every kTm, k=0,…(, the hazard function “reverts” back to h(0). This behavior is expressed mathematically as:
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Another way of expressing h*(t) is
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Figure U11.3 illustrates this hazard function with maintenance for the case of increasing hazard function without maintenance. But what is f*(t)? To get f*(t), we need the survivor function with maintenance R*(t).
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Fig. U11.3: Effect of Preventive Maintenance on Hazard Function

By (U11.16), on substitution of (U11.20), we have that 
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Now consider evaluating R*(t) for a particular t. With no loss of generality, let 2Tm<t<3Tm. Then the first term in (U11.22) is just R(Tm) because the integrand is 0 outside the range of 0<t<Tm. The second term is also just R(Tm) because the integrand is 0 outside the range of 0<t-Tm<Tm (which is the same as Tm<t<2Tm), the integration is over 0 to t, a range of integration which fully includes the range Tm<t<2Tm, so inside the range where the integrand is non-zero, it evaluates to the same thing as the integration of the first term. In other words, the first and second terms have integration over the exact same function except that it is right shifted by T​m in the second term. The third term evaluates to R(t-2Tm) since we have assumed 2Tm<t<3Tm. All higher terms evaluate to 1.0 because their integrands are zero due to h1(t). Therefore, 
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(U11.23)

We deduce from the last part of (U11.23) that that the general form of R*(t) is
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Thus, by (U11.13), (U11.21), and (U11.24), we have
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Since, f(t-kTm)=h(t-kTm)R(t-kTm), then
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Interpretation: 

The failure time pdf, with maintenance, is, at any given time t, the product of the shifted pre-maintenance hazard and survivor functions (which is the shifted pre-maintenance failure time pdf), scaled down k times by the probability that the unmaintained component will survive until the first maintenance, where k is the number of times the component is maintained up until time t.  


Example U11.4
The lifetime hazard function for a certain component is given by
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Consider that maintenance is performed yearly, so that Tm=1. At t=0, h(0)=0.25, and at t=1, h(1)=0.333. The survivor function, without maintenance, is given by (U11.16), which is
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Then the failure time pdf, without maintenance, is given by (U11.13), as
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We note f(t) is uniform; the limits come from the fact that the integration over all time of f(t) must be 1.The hazard function, with maintenance, is expressed according to (U11.21) as:
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The survivor function, with maintenance, is expressed according to (U11.24) as:
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The failure time pdf, with maintenance, is expressed according to (U11.25) as:
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The hazard, survivor, and failure time pdf are illustrated on Fig. U11.4.
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Fig. U11.4: Effect of Maintenance on Hazard Function for Example U11.2
From (U11.6), we see that the MTTF equals the area under the survivor function. Without maintenance, this area is that under R(t), which is clearly 2 years. With maintenance, this area is over 3 years. Precise calculation [1] shows it to be exactly 3.5 years.


Problems


Problem 1

Problem 2
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