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Module PE.PAS.U11.5 

Reliability of non-repairable components

U11.1

Introduction

We focus on the analytical methods of modeling the reliability of a single non-repairable component that may fail. 
This is in contrast to analytical modeling of a system of components any one of which may fail. 
· Reliability is the probability of a device or system performing its function adequately, for the period of time intended, under the operating conditions intended.

· Reliability is the probability that a product or service will operate properly for a specified period of time (design life) under the design operating conditions (such as temperature or voltage) without failure.

· Reliability is the ability of an item to perform a required function under stated conditions for a stated period of time.

· Reliability is the duration or probability of failure-free performance under stated condition.

(mission-oriented reliability, i.e., the component or system must continue to function without failure for the duration of its mission. 

Power systems, on the other hand, are continuously operated systems. Continuously operated systems are repairable. 
One definition for power system reliability is [5]

· Power system reliability is the ability to provide an adequate supply of electrical energy. 
Billinton&Allan: “The concept of power system reliability, however, is extremely broad and covers all aspects of the ability of the system to satisfy the consumer requirements. The term reliability has a very wide range of meanings and cannot be associated with a single specific definition such as that often used in the mission-oriented sense. It is therefore necessary to recognize its extreme generality and to use it to indicate, in a general rather than specific sense, the overall ability of the system to perform its function.” 

However, mission-oriented definitions are often applicable to the assessment of individual power system components. 

An important distinction between different types of components is whether it is repairable or not. We proceed in the remainder of this section to describe modeling techniques for nonrepairable components. 

U10.2
Fundamentals of non-repairable components

Let T be a random variable representing the time to failure of a component, and let f(t) denote the probability density function (pdf) for T, the failure density function. 
The cumulative distribution function (cdf) corresponding to f(t) is denoted by Q(t). 
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(U11.1)

The survivor function, denoted by R(t) is given by
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(U11.2)

Taking the derivative of (U11.2), we obtain
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Example U11.1 [8]

A component has a reliability function of 
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, where t is measured in years. Determine the length of guarantee period such that the probability of failure within that period will be 0.01. 

The probability of failure within that period is Q(t)=Pr(T>t)=1-R(t). We desire to find t such that Q(t)=0.01.
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Thus, if the manufacturer wants to replace no more than 1% of its components, the warranty should be less than 0.272 years or about 3 months.


The MTTF indicates the expected time for which the item will perform its function successfully
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(U11.4)

From (U11.3), f(t) is the negative derivative of R(t); thus, (U11.4) may be written as
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(U11.5)

Integrating (U11.5) by parts,
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(U11.6)
The conditional reliability function: the probability that the component will survive for some time tc given that it has survived for time t. Recalling the basic relation for conditional probabilities, i.e., Pr(A|B)=Pr(A(B)/Pr(B), we can write the conditional reliability function as:
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(U11.7a)

The conditional pdf: the pdf on the failure time T given that the component has survived until time t, is given by
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(U11.7b)

The mean residual life, MRL, is then the expected remain life given the component has survived up until time t and is given by
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(U11.7c)

where the integration is with respect to t​c.


Example U11.2
A device time to failure T follows the exponential distribution. (a) What is the device mean time to failure (MTTF)? (b) What is the device mean residual life (MRL) given that it has survived until time tc ?
a. The exponential distribution is f(t)=λe-λt. From (U11.4), the MMTF is  
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b. From (U11.2), we obtain the survivor function as 
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so that the conditional pdf is given by: 
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and the MRL is then computed as 
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Comparison of the solution to (a) with the solution to (b) indicates that the mean time to failure for a component having an exponentially distributed failure time is independent of time.

U11.3
The hazard function

Consider a time interval (t1,t2) such that t2>t1.
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(U11.8)

This equation expresses that:

· The probability of failure of a component in (t1,t2) is given by the difference in component reliability levels at these two times.

Following the logic on conditional probability leading to (U11.7), 
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(U11.9)

When normalized by the time interval t2-t1, we obtain 
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(U11.10)

which is the probability that a failure per unit time occurs in the interval (t1,t2) given that no failure has occurred prior to t1. 
If we replace t1 by t and t2 by t+(t, then (U11.10) becomes
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The expression of (U11.11) leads to the hazard function, h(t) 
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(U11.12a)

which is equivalent to
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(U11.12b)

Using (U11.12a) and (U11.3), we have
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(U11.13)

The hazard function may be equivalently thought of in the following ways:

· the failure rate in the time interval t+(t as (t(0, or
· the instantaneous failure rate at time t, or
· the probability that the component experiences a failure per unit of time at time t,

conditioned on having no failure in the interval (0,t), i.e., that the component is still working at time t.

Solving for f(t) in (U11.3) and (U11.13) and equating the resulting expressions provides
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(U11.14)

Integrating both sides, 
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(U11.15)

so that
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Example U11.3
Continuing example U11.2, determine the hazard function for a device having an exponentially distributed time to failure T. 

From (U11.13), we have that 
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where f(t) and R(t) were found in Example U11.1, so that
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Note that all of the relations in the figure above can be developed from (U11.3) and (U11.13).

U11.4
Hazard function shapes

Plots of hazard functions, which illustrates failure rate as a function of time, typically exhibit some combination of three basic shapes.

· Decreasing with time: component reliability improves with time (burn-in, infant mortality, debugging, shake-down, or early-failure-time). The simplest hazard function for decreasing failure rate is
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(U11.17)
· Constant with time: component reliability remains the same throughout time (chance, random). No deterioration process, or components subject to deterioration processes that are not influential until the latter portions of their lifetimes. The hazard function for constant failure rate is given by 
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as shown in Example U11.2, arising from the exponentially distributed failure time. One common cause of failure during the chance period is overstress. Classification of overstress failures: 

brittle fracture, ductile fracture, yield, buckling, large elastic deformation, and interfacial deadhesion.
· Increasing with time: component reliability degrades with time (wear-out or old-age), from some type of complex aging phenomena. Classification of Wear-out failures: 

wear, corrosion, dendritic growth, interdiffusion, fatigue crack propagation, diffusion, radiation, fatigue crack initiation, and creep.

The simplest hazard function for decreasing failure rate is when failure rate decreases linearly with time according to:
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which characterizes a Rayleigh distributed random variable (Weibull with β=2).
A detailed description of each overstress and wear-out failure mechanism is given in [7], Chapter 6. 

Overstress and wear-out failure mechanisms may also be classified by the nature of the failure mode:
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   Mechanical:      Elastic and plastic deformation      Buckling      Britt le and ductile fracture      Fatigue crack initiation and crack  growth      Creep and creep rupture      Electrical:       Electrostatic discharge      Dielectric breakdown      Junction breakdown in semiconductors      Hot electron injection      Surface and bulk trapping      Surface breakdown        Thermal:      Heating beyond critical temperatures      Thermal expansions and contractions      Radiation:      Radioactive containment      Secondary cosmic rays      Chemical:       Corrosion      Oxidation      Surface dendritic growth  
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Fig. U11.2: The Bathtub Curve
In addition to the three basic shapes, there exist components exhibiting hazard functions with other types of shapes. Reference [7] summarizes the basic and other shapes as follows:

· Type A: Nonincreasing (includes monotonically decreasing)

· Type B: Nondecreasing (includes monotonically increasing)

· Type C: Constant

· Type D: Bathtub

· Type E: Inverted bathtub (also called unimodal)

· Type F: Decreasing followed by unimodal

· Type G: Unimodal followed by increasing

· Type H: Unimodal with h(t) > 0 as t(0

· Type J: Bimodal with h(t)>0 as t((
· Type K: Bimodal with h(t)(0 as t((
· Type L: Bimodal with h(t)( ( as t((
A unimodal characteristic has one “peak” (with either zero or one “valley”) and a bimodal characteristic has two “peaks” (with either one or two “valleys”). 

Analytic modeling of the type A-C shapes are facilitated using the exponential distribution or various forms of the Weibull distribution, as indicated in the first two rows and first three columns of Table U11.1.
Table U11.1: Distribution functions capable of modeling hazard function shape types

	Distribution
	Type

	
	A
	B
	C
	D
	E
	F
	H
	I
	J
	K
	L

	Exponential
	
	
	Y
	
	
	
	
	
	
	
	

	Weibull
	Y
	Y
	Y
	
	
	
	
	
	
	
	

	Mixture Weibull
	Y
	Y
	Y
	Y
	
	Y
	Y
	Y
	Y
	Y
	Y

	Competing risk
	Y
	Y
	
	
	Y
	
	
	
	
	
	

	Multiplicative
	Y
	Y
	
	
	Y
	
	Y
	
	
	
	

	Sectional
	Y
	Y
	
	Y
	Y
	
	
	
	
	
	

	Exponentiated Weibull
	Y
	Y
	Y
	Y
	Y
	
	
	
	
	
	


The last 5 rows of Table U11.1 indicate composite distributions, comprised of two or more basic distributions. For example, the mixture Weibull is comprised two or three Weibull distributions each of which have well-tuned and unique scale and shape parameters. The mixture Weibull is very powerful in enabling capture of a large number of hazard function shapes. 
Reference [7] indicates that composite distributions are often necessary for approximating hazard functions when “the failure of a component is due to one of many different failure modes. As a result, the failure date of such components are complex and the empirical plots of the density and failure rates exhibit shapes that cannot be adequately modeled….” by basic distribution functions.

Each of the seven rows in Table U11.1 constitutes a model “family” [8]. This family involves parameters which require estimation based on the available data, making this method of modeling parametric since the model family is chosen first and then the associated parameters selected to fit the model to the data. The alternative, non-parametric or empirical estimation, makes no assumption about the underlying distribution and determines the hazard function based purely on the data.
U11.5
Components with preventive maintenance

A component may be classified according to whether or not it is repairable, and according to whether or not it is maintainable. 
Repairability refers to the ability of the component to be renewed after it has failed. 
· A non-repairable component is a component [9] that cannot be repaired, where repair is not economical or where the component lifetime up to the time of catastrophic failure is the point of interest; such components are discarded and replaced when they fail. This is appropriate for many low-cost items such as fuses, light bulbs, transistors, and contacts. 
· Repairable items are not replaced following a failure but are rather repaired and put into operation again [10].

Maintainability refers to the ability of the component to be renewed while it is operable.

· A maintainable component is one for which the hazard function increases with time. If the component hazard function decreases with time, then a maintenance task tactually degrades its reliability. If the component hazard function is constant, then its failure rate never changes and it is impossible to have any effect, good or bad, through maintenance. 
Because repair takes place only after failure, it cannot really be scheduled a-priori. Maintenance, on the other hand, can be.

A component may be nonrepairable but maintainable, i.e., if it fails, it cannot be renewed, but something can be done to delay its failure. An old automobile: we regularly change its oil to delay engine failure, but once the engine fails, we send it to the junkyard. 
Preventive maintenance: component is taken out of service on a regular schedule for inspection, cleaning, and replacement of parts. 

Determine: what PM does to the pdf and the hazard function. 
Assumptions:

· A maintenance task takes no time.

· A maintenance restores component to “brand new” condition.

· Maintenance is done at periodic intervals of time given by Tm.

· Component hazard function monotonically increasing with time. 

Probability of component surviving past maintenance interval=R(Tm)=Pr(T>Tm). Denote:
· h(t): hazard function without maintenance 

· h*(t) hazard function with maintenance. 
· f(t) failure time pdf without maintenance

· f*(t) failure time pdf with maintenance. 
No maintenance during interval (0,Tm), but at t=Tm, maintenance is performed; component returned to “brand new”
(h*(t)=h(t-Tm) for Tm<t<2Tm,
At every kTm, k=0,…(, the hazard function “reverts” back to h(0), 
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(U11.20)
Another way of expressing h*(t) is
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Fig. U11.3: Effect of Preventive Maintenance on Hazard Function

To get f*(t), we need the survivor function with maintenance R*(t)…

Substitution of (U11.20) into (U11.16),
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     (U11.22)

Now consider evaluating R*(t) for a particular t. With no loss of generality, let 2Tm<t<3Tm. Then R*(t) is:
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(U11.23)

We deduce from the last part of (U11.23) that that the general form of R*(t) is
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Thus, by (U11.13), (U11.21), and (U11.24), we have
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(U11.25)
Interpretation: 

The failure time pdf, with maintenance, is, at any given time t, the product of the shifted pre-maintenance hazard and survivor functions (which is the shifted pre-maintenance failure time pdf), scaled down k times by the probability that the unmaintained component will survive until the first maintenance, where k is the number of times the component is maintained up until time t.
Since, f(t-kTm)=h(t-kTm)R(t-kTm), then
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Example U11.4
The lifetime hazard function for a certain component is given by
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Yearly maintenance: Tm=1. 
At t=0, h(0)=0.25, 

At t=1, h(1)=0.333. 
The survivor function, without maintenance, is 
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Then the failure time pdf, without maintenance, is
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The hazard function, with maintenance, is according to (U11.21):
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The survivor function, with maintenance, is according to (U11.24):
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The failure time pdf, with maintenance, is according to (U11.25):
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MTTF=area under the survivor function. W/O maintenance, this is under R(t), 2 years. W/ maintenance, this area is 3.5 years. 
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