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Abstract — Engmeers in the power industry face the problem that,

whlle stability is increasingly a limiting factor in secure system opera-
o tion, the simulation of system dynamic response is grossly overburden-

b | }ing on present-aay digitai computing resources. Each individual re-
:.sponse case involves the step-by-step numerical solution in the time

{ ‘ ‘domam of perhaps thousands of nominear differenual-algebraic equa-
b I8 tions, at a cost of up to several thousand dollars. A high premium is
: thus to be placed on the use of the most efficient and reliable modern

It

o e e At Bt eSS ‘......»T.__,_' At i

mal design }i 3;calculation techniques.
78r=1mmi"! : 2 This paper is a critical tutorial-review of the calculation methods used
- Syst., pp. ! \' toutinely or investigated for use by the industry. It concentrates on
ol 4 swlution concepts and computational techniques rather than on the
3‘:‘:‘:,‘;:;‘; ‘3 i analysis of the numerical methods. Details of system modeling are
3740_743’ SR only emphasized when they affect the choice of solution method. The
SN paper concludes with a view of the state of the art and a prediction
ron Lett., of future directions of development.
P&
mentation } [
) program- B8
568-569, - NOMENCLATURE
voice pro. ' ' General
Syst., pp. &' -t Time.
rammable ‘Jif - ' Integration step length.
pp. 521- §@ 1 ¢ Identity (unit) matrix.
to. “Paral- Bl : / Jacobian matrix.
’ ) X
al filters,” ' Vectors and matrices are denoted by boldface font, e.g., x.

| First derivative with respect to time is denoted by dot, e.g.,
L. dx/dt = X. Subscripts n ~ 1, n denote values at times ¢,,_,, ¢;.
4 Superscript ¢ denotes that the vector or matrix is complex.
Superscript ¢ denotes a real vector or matrix resulting from
the expansion of the original complex form into its real and
';7 imaginary parts. Subscripts d, q and re, im denote compo-
i nents expressed in the machine rotor and network(complex)
. reference frames, respectively.

"i'_Main Equation Sets

state variables in differential equations.

x " State variables in algebraic equations.

f Functions defining differential equations.
g Functions defining algebraic equations.

u

: Subset of x that appearsin f
el interface variables.
.- E Subset of y that appearsing

H® Nerwork

Vv Bus (nodal) voltages.
Bus (nodal) injected currents.
Bus (nodal) admittance matrix.

I
Y
VA Bus (nodal) impcedance matrix = Y.
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| Power System Dynamic Response Calculations

BRIAN STOTT, MEMBER 1EEE

Invited Paper

Machine
E' Stator internal voltage.
I Stator current.
v Terminal voltage (also an element of bus voltage

vector V).
X Stator reactance.
) Rotor angle.
P, Air gap power.
P, Turbine power output.
Ey Field voltage.
AI V| Deviation of | V| from reference setting value.

'

I. INTRODUCTION

IIE CONVENTIONAL power-system stability study com-

" putes the systém response to a sequence of large dis-

turbances, usually a network short circuit, followed by
protective branch-switching operations. The process is a direct
simulation in the time domain of duration varying between say
1 s and 20 min or more. Different components of the power
system have their greatest influences on stability at diffcrent
stages of the response, and the system modeling reflects this
fact. It has become convenient to recognize three modes of
simulation, called short, mid, and long term, covering the post-
disturbance times of up to 8 s, 5 min, and 20 min, respectively.
The short-term models emphasize the rapidly responding sys-
tem electrical components, while the long-term models are
more concerned with representing the slowly oscillatory sys-
tem power balance, assuming that the rapid electrical tran-
sients have damped out. A different method of classification
which is now rather blurred calls the short-term problem
“transient stability,” while anything longer is called ““dynamic
stability.”

In the engineering applications, if is frequently desirable to
make many response simulations to calculate, for example, the
effects of different fault locations and types, automatic switch-
ing, initial power system operating states, and in design
studies, different network, machine and control-system charac-
teristics.  However, the volume of computation imposes very
severe constraints on such studies. For a large system,
thousands of equations must be solved and each case can take
an hour of CPU time on a large modern computer. Hence,
there is always considerable incentive to find superior calcula-
tion methods.

Recent years have seen significant improvements in the appli-
cation of numerical and computational methods to the
problem, Also, hardware developments are continuing to
reduce the cost of computation spectacularly. Unfoirtunately,
the computational demands of stability studies are rising

_rapidly at the same time. As power and interconnection levels

0018-9219/79/0200-0219$00.75 © 1979 IEEE
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(synchronously rotating or
complex reference frame)

-

DIFFERENTIAL EQUATIONS=€

Fig. 1. Schematic of transient model of synchronous generator connected to transmission network.

increase, the role of stability as a limiting design and operating
factor increases. It becomes necessary to solve larger systems,
with increased detail of modeling, over longer response times,
more frequently. Therefore, the stability calculation remains
a painful number-crunching exercise that is not getting any
easier.

Stability is one of the three major routinely performed
power-system computations, the other two being load-flow
and fault analysis. The stability problem is much the most
complex of the three in terms of modeling and solution
methods. Power-system dynamic modeling is a very large
topic in its own right. In relation to computational economy,
it is always desirable to choose the computationally simplest
models that will simulate the system with adequate accuracy.
There is some degree of concensus, albeit incomplete, in the
industry about what constitute acceptable models for various
types of study. References [3]-[15] all contain very useful
reviews of industry modeling practices.

For its own part, the present review concentrates on the
different ways of solving the power-system equations, intro-
ducing modeling details only to the extent that they affect the
choice of numerical methods. The reference séction, while
not intended to provide a complete bibliography, lists many
papers that describe specific power-system dynamic response
calculation methods. -In addition to these, reference [1] is an
excellent general review of solution principles that so far has
dated very little with age. Reference [2] is a research report
containing a lot of important and often detailed comparative
material. It has been used as a primary source for the revision
of {54] to produce this review paper.

Mid-term and long-term simulations are relatively recent de-
velopments. The traditional stability problem is in the short-
term or transient mode, on which the vast majority of effort
and literature has concentrated and with which the author has
had most experience. Thus this review will be biased through-
out towards the short-term problem. However, the structures
of the various models have many features in common, and
most of the numerical techniques are relevant to all the simulia-
tion modes. The solution principles to be exposed here
should provide a guide to the treatment of special and/or non-
conforming models in whichever mode.

The reader is assumed to have some acquaintance with the
numerical soluticns of both ordinary differential equations and
large sparse algebraic equations. The power-system stability
calculation is a differential-algebraic initial value problem.

> ALGEBRAIC EQUATIONS

Large infrequent discontinuities in the form of faults and
branch switching are introduced into the algebraic transmission-
network equations, usually at predetermined times. Smaller
random discontinuities occur due to limiting in the differential
equations of the automatic control apparatus which gives the
problem the characteristic of “roughness.”

II. ANALYTICAL STRUCTURE OF STABILITY PROBLEM

The power-system eyuations as conventionally formulated
for general large-scale stability studies have a well-defined
structure, which remains valid over a wide range of specific
modeling details. Fig. 1 outlines the structure of a very typical
model. It shows one of the synchronous generators and its
controls connected to the power-systerh transmission network.

Ve

A. The Synchronous Machine

Virtually all synchronous machine models used for routine
large-scale studies are based on Park’s transformations, in
which the machine electrical behavior may be represented by
equivalent circuits in the rotor direct and quadrature axes.

Except for special studies, stator transients are neglected, in
which case the stator becomes represented as a simple im-
pedance with reactance components in the d- and q-axes, as
shown in Fig. 1. Thus the stator equations are algebraic in
commion with the network equations. ’

The machine rotor can be represented by varying numbers of
d- and g-axis equivalent circuits, which are translated into a set
of first-order differential equations. These equations are
written directly in terms of the equivalent circuit resistances
and inductances, or in terms of the ‘‘standard” machine test
parameters (synchronous, transient, subtransient reactances,
time constants). The state variables are the flux linkages,
and/or some defined equivalent voltages. Rotor-circuit cur-
rents may be retained in the equations or eliminated. Rotor
models of these types result in an equivalent internal stator
voltage with d- and g-axis components.

The rotor mechanical equations represent the accelerating
torque acting on the machine, and include the important state
variable §, the rotor angle between the d,q frame and the
network-variable coordinate system which is known as the
synchronously rotating or complex frame.

The machine also has the excitation-control and turbine
governor control-circuit equations, which are quasi- or entirely
linear, with limits on some quantities. These controls depend
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upon various fed-back signals, of which only the most essential
are shown in Fig. 1, for simplicity.

All the components to the left of the ‘iuterface’ line in Fig. 1
become represented by first-crder differential equations in the
state variables y. Included in sety are the stator internal volt-
age components, shown here as Ed and Lq, and the rotor angle.
{ These are the interface state variables that appear in both the
;,.dlfferentlal and algebraic equations of the machine, to be
Bl denoted as subset E of y. The other interface variables that
@' thpear in both sets are [gg, [gq, Al V|, and P, (denoted as sub-
; set u of x). Possible additional feedbacks from the stator
5 % equations to the differential equations are saturation factors
‘t' ; (to the rotor electrical equations) and P, (to the excitation

control).

: It should be noted that in denoting the stator internal volt-
\ & ‘age as E', it is not implied that the structure applies only to a
X ,conventxonal “transient” model—E' may be substituted by E"

' 1o imply a “subtransient” model, or by any similar equivalent

)
H

Itage, with the stator impedance modified accordingly.
on- !
llet § . The Transmission Network
tial The network is described by a large sparse algebraic nodal

dmittance matrix equation. This matrix is usually complex
d symmetrical, and constant in between infrequent branch-

switching operations. Each bus load is modeled as an exponen-
¥ tlal or polynomial function of the bus voltage magnitude and
ccasionally of the frequency. Unless all loads have the
mplest representation as fixed shunt admittances, the overall

'me'di v }network/load equation set is nonlinear, with a similar structure
cific( - .to that of the standard load-flow problem.

,ica : H X

d its . General Overall Form of System Equations

}_The complete power-system model comprises a set of first-
rder differential equations

y=f(y,x) (1)

d an algebraic set
2)

Set (1) comprises the differential equations of all machines.
ince each machine is coupled to the other machines only
Rihrough the network, set (1) is a collection of separate un-
.upled subsets. In the model shown in Fig. 1, there are two
' o ch subsets per machine, but which become joined together
henever § is fed back to the excitation control.

Set (2) comprises the stator equations of each machine,
fllansformed into the complex network reference frame,
Soupled to the equations of the network and loads, plus the
uations defining the fed-back stator quantities v, ’

0=g(y,x).

. Specific Form of System Equations
Equation (1) has a quasi-linear structure that can be
lown as:

ﬁ=f(y,u)=;4'y+B'u- (1a)

fatrix 4 is square, sparse, and block-diagonal. Matrix B is
ctangular, sparse, and blocked. (Note that the matrix form
not necessarily retained in the programming.) When satura-
lon is not represented, both A and B are constant in many of
he most common specific models.

lThe algebraic set (2) can be subdivided into two parts:

E, V=YV

z;,l
o
i 1

i

(2a)
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and

u=u(E,V) 2b)

where (2a) is the sparse bus admittance matrix equation of the
loaded network. I is the vector of bus current injections. For
a load, the injection is a function of the bus voltage, and for a
generator, it is the stator current as a function of the stator
internal and terminal voltages, transformed into the network
frame. Equation (2b) simply serves to calculate u.

The model depicted in Fig. 1 is sometimes simplified by
omitting one or both control blocks. Conversely, more ad-
vanced excitation controllers require supplementary feedback
signals such as electrical power output or rotor speed. For
mid-term and long-term stability studies, the turbine governor
has a boiler model block attached to it (for thermal units).
Also, where appropriate, centralized automatic generation con-
trol 'and economic dispatch are modeled, and sighals from
them are fed into the turbine governor blocks.

In the Appendix, the specific equations (1a) and (2b) are
illustrated for a typical simple model, and an outline is given of
the way in which the initial conditions are obtained.

111. BAsic CONSIDERATIONS IN THE
NUMERICAL SOLUTION PROBLEM

A. Solution Requirements

The objective of the step-by-step calculation process is to
compute the system dynamic responsc as rapidly as possibie,
consistent with the following requirements:

1) Sufficient Accuracy for Engineering Purposes: For gen-
eral system stability studies, this is usually measured by the
maximum error in machine rotor angles over the study period
(and’in other variables for special studies). Typically, errors of
several percent are tolerable.

2)’ Relzabtlzty, in the Sense of Not Experiencing Numerical
Breakdown on Practical Problems: The critical factors here
are the mathematical stability of the integration method and
the convergence of any iterative processes.

3) Economy of Computer Storage: This is less or more im-
portant according to the power-system size and computing
environment.

4) Flexibility: Flexibility in the range of modeling detail
that ‘can be assigned to any part of the power system, and in
the ease with which models can be altered to accommodate-.
changing study requirements and new types of apparatus.

5) Ease of Maintenance and Enhancement of the Whole
Program: This includes item (4) above. It implies simple and
robust algorithms which need minimal tuning, and uncom-
plicated coding implementations.

Total computing time for a study depends upon the work at
each integration step, and the step size(s) used. Requirements
1), 2), and 5), in particular, tend to conflict with the objective
of fast solutions, making the design of the overall calculation
scheme a very intricate exercise in tradeoffs.

B. Integration Methods

Integration methods fall into the main categories explicit
or implicit, and single-step or multistep. In explicit methods,
the integration formulas are applied directly to each of the
individual differential equations being solved. In implicit inte-
gration, the differential equations are algebraized and the re-
sulting equations are solved simultaneously as a set. This is
more complicated, but it has the reward of greater numerical
stability, as described in Section 111-D.
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Single-step methods do not use information about the solu-
tion prior to the beginning of each integration step. Therefore
they are self-starting, which is convenient in the presence of
discontinuities. Runge-Kutta is the most famous class of these
methods. Multistep methods require the storage of previous
values of the variables and/or their derivatives, and thus, in
principle, are more efficient. However, the process has to be
restarted whenever a discontinuity occurs. Most multistep
methods use the open and/or closed difference formulas, of
which the Adams family is best known.

There are several simple formulas which fit into the multistep
category that are self-starting. These include explicit and im-
plicit Euler, implicit trapezoidal and midpoint rules.

Not very many of the enormous number of integration
methods in the literature (see [16] and [17]) have found useful
application to the power-system stability problem.

C. Solution Errors

It is important to recognize the sources of numerical error in
the solution over a given step. These sources are:

1) inexactness of the integration formulas used, i.e., trunca-
tion error;

2) computational inaccuracy due to arithmetic roundoff
and, in methods that employ iteration, to nonexact
convergence;

3) failure to achieve truly simultaneous solution in time of
the sets (1) and (2), i.e., interface error;

4) approximation error, where certain assumptions about
the behaviors of the variables or the linearity of the equa-

» tions over a given step are made in return for computa-
tional economies;

5) failure to detect and apply limiting and limit backoff of
variables at exactly the correct times, due to the use of
finite time increments, and often to imprecise limit-
handling techniques.

With any solution method, truncation, interface, approxima-
tion, and limit errors can be kept within acceptable bounds by
using sufficiently small step lengths. This tends to be detri-
mental to overall computing speed.

D. Stability of Integration Methods [2], [16]-[19]

The error in the solution at the end of any integration step is
some function of the errors incurred as above during the step,
and the error inherited from the beginning of the step. Nu-
merical stability of the method is concerned with the propaga-
tion of error over many successive steps. An unstable method
is one in which the error tends to accumulate so that it even-
tually “blows up” and swamps the true solution.

Integration methods are classified stability-wise according to
certain properties that basically relate to their performances on
linear problems, giving rise to terms such as “symmetrically
A-stable,” “stiffly stable,” “conditionally stable,” etc. Here, it
seems inappropriate to use this terminology without providing
the analytical background. Thus we will typically refei to
methods as “very stable,” “not very stable,” and so on, on a
comparative basis. For instance, those methods that have been
most widely used in the power-system problem (e.g., explicit
Euler, Runge-Kutta) are not very stable ones, compared with
the more recently used implicit methods.

The less stable an integration method is, the more it is
necessary on a given problem to limit the generation and thus
propagation of errors by using high-order (low truncation

PROCEEDINGS OF THE IEEE, VOL. 67, NO. 2, FEBRUARY 1979 '

error) versions of the method, by converging iteration cycles
accurately, by using high-precision arithmetic, and most of all,
by using small step lengths. In the present power-system prob-
lem, interface error is a special hazard which has been given
much attention in the design of overall solution schemes. All
these measures tend to increase the overall computing time.
The difficulties are exacerbated if the problem itself is mathe-
matically “stiff,”” as described in the following section.

E. Problem Stiffness

The stiffness of a set of differential equations is a property
analogous to ill-conditioning in algebraic equations. It is asso-
ciated with the rarge of time constants (the rates of response
of the different variables) in the system. The problem is stiff
if the ratio between the largest and smallest time constants is
high. More precisely, stiffness is measured by the ratio be-
tween the largest and smallest eigenvalues of the linearized
system.

On a stiff problem, a relatively unstable integration method
will need very small step lengths to track accurately the
rapidly changing components in the system response in order
to maintain truncation (and other) errors at safely low levels.
This is the case even when these components are small-
magnitude fluctuations (quiescent: modes) superimposed on
slower varying responses, and which have very little effect on
the solutions of the main variables of interest. On the other
hand, a more stable integration method can tolerate much
larger errors per step, because they are not going to be propa
gated as much. Hence, it becomes possible to use larger step
lengths and/or be less concerned to minimize other errors for
the same overall accuracy of solution.

The advantages of highly stable methods over weakly stable
ones tend to reduce as the problems.to be solved become less
stiff. The classical “fixed voltage behind reactance” power-
system transient stability model is not stiff at all, unless ma-
chine inertias vary widely (as is the case if small synchronous
motors or compensators, or induction motcrs are represented).
Stiffness increases with the detail of synchronous machine
modeling. For instance, subtransient time constants are an
order smaller than transient time constants. Particular sources
of stiffness are the smtall-time constants that can be found in
excitation control transfer-function blocks. It is also important
to recognize that stiffness is not simply identifiable from the

physical time constants in the input data. There is hidden

stiffness in the algebraic equations [6], especially with non-
impedance loads.

IV. CLASSIFICATION OF OVERALL SOLUTION APPROACHES
A. General

Until recently [2], [54], there have been no attempts to
locate all overall solution schemes within a classification sys-
téxﬁ, and, therefore, there is no agreed terminology on the
mdtter. The present review adopts the system suggested in
[2], with small differences in the definitions.

i;’fhe problem is to solve the differential set (1) simultaneously
ilfljvitime with the algebraic set (2). The many possible overall
s{:}}emes are characterized mainly by: a) the way in which (1)
and (2) are interfaced with each other, b) the inlegration
method(s) used, and c) the technique(s) used for solving the
algebraic equations.
 Choosing a) as the main level of classification, interfacing
approaches are identified as Partitioned or Simultaneous (the

corresponding names given in [54] were Alternating andy

X
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Blombined). The Partitioned approach may further be divided
i ccording to whether an Explicit or Implicit integration
pmethod is used. All practical Simultaneous-solution methods
ilse implicit integration.

it
?. The Partitioned-Solution Approach

g; This is the traditional approach, used in nearly all present-
iday industrial programs. The differential-equation set (1) is
tolved by integration separately for y, and the algebraic set
{2) is solved separately for x. These solutions are alternated
vnth each other in some manner. The respective solutions may
or may not be iterative, and true elimination of interface error
’ may or may not be achieved, depending on the specific meth-
ods and system models.

The two salient defining features of the Partitioned approach
’l‘re a) the integration method and the network-solution
imethod may in principle be chosen independently of each
kother and b) it is always possible, through the use of
sextrapolatlon/mterpolatlon techniques (see Section V-D) to
solve the network only every few integration steps. This latter
,,u generally the case in mid- and long-term stability calculations,
t“although it is much less common in the short-term mode.

oy

;C.' Simultaneous-Solution Approach

.- Implicit integration methods convert (1) into a set of
!algebralc equations in the unknowns y, and x,,, i.e., the values
§ at the end of the step. In the Slmultaneous-solutxon approach,
'these algebraized equations are lumped together with (2) to
form a single larger algebraic set, all of whose variables are
then solved simultaneously. Inherently in this approach,
cquatlon (1) is solved with the same frequency as (2), and
there is no interface error. The Simultaneous-solution ap-
proach has been adopted in at least one routinely used indus-
trial program, and a number of prototype test programs. It
has been attracting interest as possibly a superior scheme.

"

i

i

b V. PARTITIONED-SOLUTION APPROACH—
ki - INTERFACING PRINCIPLES
A

i

k4. General

: Consider a step in the numerical integration of (1a) from a
given point (¥,—;,U,-y) at time t,,-, . Except in the simplest
methods (e.g., explicit Euler and predictors), the integration
Ibrocess generates at one or more points in the interval
{l,-1 <t <t, a new value of y for which the corresponding
ivalue of u is required. How to deal with this requirement for
Juis the interfacing problem.

I

B. Explicit [ntggration— The General Method

Explicit methods evaluate y directly from (la), where the
televant value of y is available, and the value of u must he
brovided. Prior to each such evaluation, the subset E of y is
Bnserted into (2a), which is solved for ¥. Then the required
Balue of u is obtained from (2b), and y may now be computed.
§: This general method eliminates the interface if the solution
bf (2a) each time is exact. It is nothing more than the con-

fientional solution of a set of differential equations in which

¢ evaluation of the derivatives happens to be fairly compli-
ated. Unless the powersystem model is a simplified one,
Fiach exact solution of (Z4) must be iterative (see Section VII).
ifhis is likely to be computationally expensive, and alternative
binterfacing schemes are used in practice.

-
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C. Rigorous Interfacing by Iteration

Any integration formula in which y, is computed as a func-
tion of u, permits exact interfacing by iteration. A starting
value of u,, is provided, usually by extrapolation from stored
previous values. Using this value, integration on (la) is per-
formed to obtain y,,. Subset E,; can then be inserted into (2a),
which is solved for ¥, and, hence, a new estimate of u,, is
calculated from (2b). Now the integration step is repeated
using the new u,, (“‘reintegration’’), and so on until all variables
have converged.

The convergence rate of this block-iterative process is a
function of the coupling between the sets (1) and (2), in the
form of E and u. Fortunately, the nature of this coupling is
quite favorable. The iterative process has linear order, but its
convergence rate is usually high.

At the same time, the accurate iterative solution of (2a) at
each reintegration is not a computationally efficient strategy.
It is generally much better to perform a single iteration in the
solution of (2a) each cycle, so Lhat the solution for ¥, be-
comes ‘“‘interlaced’ with that of y,,. This idea can be taken a
step further if the integration itself is an iterative process by
performing also only a single iteration in the solution for y,, at
each cycle. :

D. Nonrigorous Interfacing by Extrapolation of u

The above iterative scheme is not possible with some integra-
tion methods (notably Runge;—kutta), and, moreover, may not
be desirable if computational economy is served by solving the
network less frequently than the differential equations. In
such cases, any values of u required during the integration
step(s) are provided by extrapolation. A new value of u is only
properly solved for at the end of the integrafion step(s) when
the network equation (2a) is solved, using the final value of E:
This gives imperfect interfacing, which might nevertheless be
tolerable if the extrapolated values of u are sufficiently
accurate.

However, there is always a danger that too much error will
be generated. If the stability of the integration method is
weak, the whole solution could fail. More commonly, time
drift in the system response is experienced. At least one short-
term stability program has controlled (but not eliminated) the
interface error as follows. The new value of u, calculated af
the end of the step is compared with its extrapolated value.
If the difference is excessive, the new value is used to re-

estimate the previously extrapolated intermediate values by -

interpolation, and the step is reintegrated.

E. Note on Extrapolation

The above exposition on extrapolation implies that the u
variables are extrapolated individually. Divided differences are
convenient, since they do not rely on equidistant points. 1t is
enough to store one or two values previous to the beginning of
the current step. Attempts at more accurate extrapolation
either give marginal further improvements, or become less
reliable due to soiution roughness, and add to the problems
of restarting after discontinuities.

Instcad of extrapolating u itself, another approach is to
extrapolate only the bus voltages. These have to be extrapo-
lated anyway in most overall solution schemes. Then each
value of u i§ computed whenneeded from (2b), using the cur-
rent value of E and the appropriate extrapolation of V. It is
difficult to say which approach is better. In principle, the
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latter benefits from the use of up-to-date E’s. However, there
is the question of whether the calculation of stator current and
power from (2b), based on the vector difference between two
imprecise quantitics (£ and ¥), might be prone to greater error.

This section provides an opportunity to discuss the extrapo-
lation of the bus voltages in general, whether used only to get
the u’s or as starting values for the iterative solution of the
network equations themselves. Reference [2] has made the
important observation that ¥ should be extrapolated in polar
rather than rectangular coordinates, since angles and magni-
tudes tend to vary somewhat independently of each other, and
it is found that accurate estimates of the angles are particularly
valuable. However, the bus voltages are normally handled in
the rectangular form in the programming. A neat approxima-
tion was achieved by geometric (logarithmic) extrapolation of
the rectangular bus voltages, which gives weighting to the ro-
tational component. Thus using one and two previous values
respectively the extrapolation formulas become

Vi =VEii/Va-
and
V=V VazalVi-a. o

Where u is individually extrapolated, this technique could be
applied to the stator currents.

For mid- and long-term stability studies, the extrapolation of
u is routinely used. Here, the network conditions vary more

slowly in relation to some of the differential variables, and the

network is solved not at each integration step, but according
to heuristic automatic controls in the programs. In several

programs, it was elected to extrapolate from linear sensitivity .

relations at the last network solution instead of from previous
valves. References [23], [25], and {26] extrapolate P, as a
function of &, and [24] extrapolates the rotor accelerating
power in.a similar way.

V1. PARTITIONED-SOLUTION APPROACH—SPECIFIC
INTEGRATION METHODS

A. General

In this section, the interfacing principles already outlined are
applied to integration methods that have most popularly been
used for the power-system problem. To date, explicit methods
have been much the more widely used, but several newer in-
dustrial programs have opted for implicit methods.

B. Explicit Euler Method

This least accurate low-stability method seems to have been
fairly widely used in the past, presumably because of its
simple implementation. The basic application is trivial. Start-
ing at point (¥p-1,Un-1), Yn-1 is computed from (1a) and
VYn =Vn-y + hpp-y is obtained. Then (2) is solved to give Vi
and u,. Although there is no interface error, this scheme is
uncompetitive.  Euler’s method demands very small step
lengths unless the power-system model is very simple and non-
stiff. Thus while only a single evaluation of y is made per
step, the network has to be solved a very large number of
times in total, consuming perhaps 80 percent or more of the
total computation. There used to be an argument. when the
choice of network-solution methods was between Gauss-Scidel
and matrix inversion, that a small step length does not hurt,
because then with good initial conditions Gauss-Seidel con-
verges in only a few iterations at each step. This is no longer
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persuasive with the use of sparse matrix factorization and good - has
extrapolation techniques. ‘ con

Solving the network every few integration steps and/or using B Inn
different step lengths for different machines is somewha K&
betler; but again, Euler’s poor performance is a limitation o 5 k.
computing economy and detail of system modeling. i A

kL clo:
C. Open Multistep Formulas ' app

The methods referred to here are predictors in the predictor- cor:

nun

cotrector class of integration methods. They are exactly the
samé as explicit Euler in implementation, differing only in the
use of previous values to gain improved accuracy (but then § T
suffering from the problem of discontinuities). They are also mul
weakly stable, and the same remarks offered about Euler'« iter:
method may be applied to them. At least one major industrial here i
program has used them. .

D. Explicit Runge-Kutta Methods {2/, [21], [27], [28], [34] § (i

The explicit Runge-Kulta method was once of the carliest to
be used for stability calculations, and is still retained ins §
number of major programs. Adapted to the differential- § (i
algebraic problem, a popular fourth-order version can b §
written: @

mas

ky =hf(yp-1,4n-1) (3 ¢
ky =hf(ya,uq), where yo =yy-1 +ki/2 (W
k3 = hf(yg, ug), where yg =y, +ka/2 Q0 a
ka =hf(y.y, ty), wherey, =y, +ks3 (3

(3¢

’ Yn =Pn-t +(ky + 2Ky +2k3 +ka)[6.

In the (unattractive) rigorous interfacing scheme of Sectic
V-B, the set (2) is solved exactly prior to stages (3b)-(3d),te
provide the values of u corresponding to those of y. Refer
enice [27] used virtually this approach, but carefully modelt!
the problem so that (2a) was linear, except for bus loads. B
approximating the load currents as constanl over the integre
tion step, it was possible to make a noniterative solution of
(2a) at each stage above (see¢ also Section V1I-D).

The extrapolation of u as described in Section V-D avoid
these intermediate solutions of (2), and was used, for exampl,
in a former BPA program. Having thus provided the values of
u in (3b)~(3d), and then having obtained y, from (3e), tht JE;
network is solved to give ¥, and u,. At this point, reinteg] Fi'm
tion with improved interpolated estimates of u in (3b) and
(3¢) and u, = u, is performed where dictated by the interface
error control mechanism.

The second time around, the network solution is expected fo
converge very rapidly since it has improved starting values. [
necessary, reintegration can be performed more than onct
There seems to be little difference in total computing timea
accuracy between a method with one reintegration every step
(systematic reintegration) and a method without reintegratios
using half the step size {2]. The latter has an advantage #
coping with fast machine components and roughness. Never
theless, provided that the step lengths and tolerances m
tuned so that it is not applied too often, nonsystematic reinte
gration does guard against excessive interface errors at critil
stages in the power-system response.

There is not too much agreement on the question of (he bee g8
Runge-Kutta version. The studies in [21] found that afifth
“order method was best on a stiff problem (but extrapolatin g
of u and reintegration were not tried). A fourth-order versio'l‘
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has been used in most industrial programs. Studies in [2]
concluded that a third-order version is most efficient, bearing
jn mind solution roughness.

E Predictor-Corrector Methods (2], [21], [22], [28]-[30]

A predictor-corrector pair consists of an open formula and a
tlosed formula in the multistep category. The predictor is
applied once per step to provide good initial conditions for the
corrector. The corrector itself may be applied with a fixed
fnumber of iterations per step (frequently, once only), or it
vmay be iterated to convergence.

(; There is wide agreement that the best general-purpose for-
r mulas are those in the Adams family. A simple one-corrector-
g lteration version for the power-system problem is illustrated
i here with a typical Adams pair:

(i) compute y,-y =f(¥n-1,Up-1) from (la)
(ii) predicty, from

Yn=Yn-y th(23p,.1 ~ 16P,- +50,-3)/12 (4a)

" (ili) insert subset £, of y, into (2a), solve for V,, and, hence,
{ compute u, from (2b)

" (iv) compute y, =f(y,,u,) from (la)

' (v) correct y,, from

Yn =Vn-1 +Rh(5F (¥, ) + 8 p-y - Fn-2 W12 (40)

(vi) insertsubset E, of y, into (2a), solve for V,, and, hence,
compute u,, from (2b).

. The above implementation eliminates interface error if (2a)
,e)" il [ls solved exactly in stages (iii) and (vi), this being the general
; imethod of Section V-B. Even in the one-corrector-iteration

on; \version, several variants are possible. At the end, an additional

to'; aalculation of ¥, as in stage (iv) could be made, for use in the

er- next integration step. Or stage (vi) could be omitted, accepting

led B the predicted value of uy, as final. Or stage (iii) could be

Byl ;/omitted, supplying an extrapolated value of u, for use in
stage (iv) {22]. The last two options do not achieve interface
relimination.

L An extrapolated value of ¥, should be provided to start the
first solution of (2a). Subsequent solutions of this equation
Ewill converge very rapidly, since their starting values become
- of; successxvely better. When corrector iteration is considered, the
number of variants multiplies. Rather than catalog them all, it
Fmay be better to make a few general remarks. The corrector
may be iterated in a loop between stages (iv) and (v), with u,
constant at the predicted (or extrapolated) value, i.e., giving
| emphasis to the accuracy of integration rather than the inter-
face, Alternatively, stage (vi) may be included in the loop, at
Lthe expense of extra network solutions. If in this case the
i corrector is converged accurately, interface error is eliminated
2 Ofi)] even if stage (iii) is omitted. (See Section V-C.)
' . The main point about corrector iteration is that the correc-
Hlor formuia is generally more stable and accurate than the
J u{ predlctor When iterated to convergence, the solution is inde-
pendent of the performance of the predictor, which has simply
fprovided initial values for the iterative process, and could even
be replaced by a more conventional extrapolation formula. In
Imathematxcal sense it would be always desirable to converge
lhe corrector. However, this may not be computationally

ttractive in terms of the work per integration step. Also {and
|h|s is highly relevart to the methods of the next section), the
orrector convergence becoines increasingly slow and unre-
ble as the stiffness of the problem increases.

e
A
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The formulas in the Adams and other families all have the
same structure and virtually the same computational effort.
They differ only in the coefficients and the numbers of previ-
ous values required. The lowest order version is Buler, which is
self-starting. Therefore it becomes possible to program a
variable-order code where, to restarl after a discontinuily,
successive integration steps use successively increasing orders
of formula, building up the necessary previous values as they
go. As with all methods that use previous values, predictor-
corrector methods suffer from solution roughness-—restarting
is inefficient and/or inaccurate. On the other hand, failure to
restart after a discontinuity can introduce gross errors,

This class of methods is competitive for problems with very
limited stiffness and few discontinuities. Reference [21]
demonstrates excellent results on such a problem using fifth-
order Adams formulas and several interfacing schemes (step
lengths up to 0.12 s and lower total computing times than
other methods). The studies in [2], using a variable-order
code on a range of more practical power system problems,
were less encouraging, and it was concluded that solution
roughness makes Runge-Kutta more attractive on the whole.
For stiff problems, neither approach is satisfactory.

F. Implicit Multistep Integration (2], [18]-[21],
[29],[40]. [41]

These more modern methods were designed to overcome the
deficiencies of the predictor-corrector approach on stiff prob-
lems. It was recognized that: a)some very stable closed
corrector-type formulas are available, b) to get the maximum
advantage from these formulas, it is necessary to iterate the
corrector to convergence, thereby freeing the solution from
the influence of the prediction (or extrapolation), and c) the
forward-substitution mode of iterating the corrector in the
previous section must be replaced by a much more powerfully
convergent technique.

It is noted that (4b) is a set of simultaneous equations in y,,,
with u,, the only other unknown. In fact, all closed multistep
formulas of this type can be expressed in the general form

n = Khf (P, tt) + C (5)

where C is the sum of weighted y and y terms backwards from
time t,.;, and k is a constant coefficient. The set (5) can be
solved for y, by a method such as generalized Newton-
(~Raphsop).
iterations of the last section. A predictor of the type (4a) is
now only a somewhat arbitrary means of providing good start-
ing values for the iterations, and may be replaced by any other
convenient method of extrapolating y. As usual, starting
values for V,, and u,, are obtained by extrapolation.

In the absence of saturation, equation (5) is usually linear in
¥, and a direct solution, equivalent to a single Newton itera-
tion, can be made. Substituting for f from.(1a) and rearrang-
ing, equation (5) becomes:

[§~ khA] y, =khB ‘u, +C. (6)

With A and B constant, the left-hand matrix is constant over
the step, and a matrix solution of (6) gives y, directly in terms
of u,. In the original and still perhaps largely definitive
scheme [18], equation (6) is thus solved alternately with an
iteration in the sotution of (2) for ¥, and hence u,,, until the
process has converged and interface error is eliminated. (An
interesting feature of (6) is that it handles even zero-valued
machine time constants with no difficulty [18].)

This solution directly replaces the corrector
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Compared with the forward-substitution scheme for iterating
the corrector in the previous section, the direct solution of (6)
costs a little more work per step, and is more complicated to
program. llowever, much larger steps can be taken on stiff
problems, at a great overail saving in computation.

Saturation modeling in the machine and/or the excitation
control introduces nonlinearities into matrices A and B, and
an exact direct solution of (5) is not possible. In principle we
could revert to a rigorous Newton solution approach for
(5), preferably keeping the Jacobian matrix constant over the
step. Usually, the effect of saturation is not too large, and
excellent convergence is expected. A more convenient scheme
is to include saturation in an outer loop, simply modifying the
reactance elements in 4 and B every time (6) is solved. This
scheme is not quite as strongly convergent as the Newton ap-
proach, but in the author’s experience it very rarely worsens
overall convergence. The exception was where a heavily satu-
rated generator was marginally stable with saturation repre-
sented, and unstable without. Then at critical periods in the
response, overall convergence was siowed down, and failed in
some runs using otherwise-acceptable step lengths. Often,
saturation is assumed constant over a step.
G. Implicit Multistep Formulas

There remains the question of which closed integration
formula(s) to use. As an alternative to the not-very-stable
Adams(-Moulton) family, Gear has offered a corresponding
family which, while a little less accurate, is extremely
(“stiffly”) stable. At the low-order end, the self-starting
implicit Euler and Trapezoidal mecthods with so-called A-
stability are available, and as in the predictor-corrector ap-
proach, variable-order and variable-step codes have been
developed. In any such schemes, the second-order Trapezoidal
rule will always be preferred to the first-order Euler. Another
highly stable self-starting second-order formula, slightly dif-
ferent in form from (3), is the implicit Midpoint rule.

Reference [18) exposed clearly the benefits of stable implicit
integration in the power-system application. On the basis of'
excellent comparative results the Trapezoidal rule was chosen
to replace the Runge-Kutta Method in the BPA program.
Shortly after, the same method was incorporated by the
author and colleagues into another production program, also
with considerable savings over previous methods. As expected
from the theory, there is no need to use very small step
lengths, however stiff the problem. At the same time, on
nonstiff problems, the method appears to be at least competi-
tive with higher order explicit methods.

At first sight, this last statement seems to contradict the
theory, and an explanation will give some insight into the
special character of the power-system problem. When com-
parixié integration methods with each other, numerical analysts
nearly always tacitly assume that accuracies to several decimal
places are required, and on general nonstiff problems, the
comparisons then depend heavily on the relative truncation
errors. In contrast. the accuracy requirements in the power-
system case are very relaxed (a few percent error tolerable),
permitting the design of an unusually “sloppy’’ overall solu-
tion scheme. Over an integration step, truncation error is
only a part of the relatively large total error generated (see
Section 11-C), which diminishes the importance of the order of
the integration n.cthod. Nevertheless, the method has to
cope with the propagation of the total error over many steps,
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and, therefore, numerical stability is a great advantage, and solved u
tends to compensate for low order. of the

Higher order stable implicit methods have been used in § Block 5
slightly different, but for the purposes of this discussion, B successi:
equivalent implementations. References {20}, [40], and [4}) é unison -
used the Gear formulas, and [19] used hybrid integration,it §% and the

variable-order codes. Promising results were obtained in each !9 matrix .
case. However, these and other stable methods (e.g., tht " substitul
Midpoint rule) can be unreliable for fast nonquiescent van equation
ables, such as those in some of the excitation-control circuits then be
The integration formulas have spurious roots that can unde general,
certain conditions lead to spurious solutions. From the enp that pro
neering point of view, the worst case is if a stable solutionte Rather
an unstable problem is produced. Because of this danger, I § merical v
endorsed the choice of the Trapezoidal rule on its own,sint B gigebraic
this method is not prone to the above phenomenon and give fi analytica
unique solutions to problems. The extent and likelihood ¢ & analyticy
the danger in power-system studies is not yet well quantifie! b coded dis
and further investigation would be justified. It is unfortunat link a

that there are no equally well-behaved very stable multiste
methods of higher order than the Trapezoidal rule. ,Onth
other hand, such hypothetical methods would not be sl
starting, and would suffer during periods of solution roughnes

The comparative studies in [2] concluded that the Trapero

The step
chine rea
no extra .

The ab«
a block-si

e e | e AT

dal rule is “significantly more efficient than any explict of the fu
method.” The fifth-order implicit Adams-Moulton formui even in m
was tried in [21] on a stiff problem, showing that this alsos ’ machine
not nearly as economical in overall computation as tv identities
Trapezoidal rule. interconn:
1. Partitioned Solutions of the Differential Equations :‘?:;;%a;lr‘o
In any integration method, the differential equations of /i It shoul
machine and its controls may be partitioned. The mor! where eac.

natural form of partitioning is to divide the equations ir
subsets according to the component blocks as shown in Fit!
From the viewpoint of flexible program structure, it is then
easier to build the complete model of each machine by assee
bling the desired combination of blocks from a series of &
ferent standard component maodels that are available in !
program. Each of the constituent blocks for a machine h
very limited coupling with the machine’s other blocks. This
illustrated in (A.5), where in matrix 4 there is a sinp
coupling variable between the excitation-control and ol
electrics| blocks, and two such varjables between the rola
mechanics and turbine-governor blocks.” There is little m
coupling in advanced models.

In some schemes, partitioning of the differential equation
only a device for program organization and does not affe
numerical performance. In others, it is essential to the sol
tion methodology. For instance, the different blocks may
solved with different integration step lengths, as descn
further in Section 1X-A. Here, we will restrict our attentios:
partitioning in the interesting implicit multistep methol
assuming that the same A is used for all equations.

Referring to (6), the structure of (§ - kA ] is almost iden
cal with that of matrix A itself. It is not essential to solvel
directly as a single matrix equation per machine, Each comp
nent block may be solved separately, and then linked with®
block(s) coupled to it.

One such scheme takes advantage of the fact that the wh
solution process over the integration step is iterative. Foll
given machine, a certain component block, say Block 4,

& solution o
. gration, b

This is =
1 fact that (°
Assumin:
Athe step, tI

hower seric
the series 4

ch iteratic
onctions of
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bt solved as per (6) for the subset of variablesy 4. Then the value
Ji. of the coupling variable from y4
i‘ Block B, which is solved for yg, and so on. This is a block-
i successive substitution process that hopefully converges in
[ unison with the interfacing itcralions between the network
" and the differential equations as a whole.

is substituted into some

The structure of
matrix A suggests the most convenient specific order for the
For example, from (A.5), the excitation-control
equations will be solved first, and the new value of £, will
then be inserted into the rotor electrical equation block. In
general, care must be taken to define substitution orderings

i that produce the most rapid and reliable convergence.

Rather than solve the individual equation blocks by nu-

merical matrix methods, it is more efficient to perform manual
' algebraic manipulation on them and,
L analytical expressions that give the solution directly. Different

hence, produce the

analytical solutions for different modeling options are then
coded directly into the program. It is then particularly easy to
link a combination of blocks together for a given machine,
The step length /, integration-formula coefficients, and ma-
chine reactances (for saturation) may be changed at will with
no extra overheads, and storage is saved.

The above advantages can also be gained without resorting to
a block-successive iteration scheme. Taking specific advantage

. of the fact that matrix A is already almost upper triangular,
A cven in more detailed models, the analyticai solution of all the
" machine equations simultaneously may be obtained.

The
identities of the coupling variables are retained; therefore, the
interconnection of different model blocks remains easy. This

- _approach eliminates the previous successive interblock substi- -

tution process as a possible source of convergence problems.
It should be noted that the degenerate case of partitioning,

. where each equation is solved individually, is the Gauss-Seidel

olution of (6). This is structurally as flexible as explicit inte-

L gration, but would not normally be used due to its inferior

7 covergence properties.

2* 1 Matrix Exponential Method [23], [25], [26]

i?;ThlS is an implicit single-step method that is based on the

i fact that (1a) is in classical state-space form.

i Assuming that the “forcing function” u varies linearly over
ille step, the solution of (1a) at the end of the step is

)

i where ¢, W, and W, are functions of the matiix exponential
ki ¢Ah  This exponential can be expressed as an infinite matrix
g'power series, and can be evaluated numerically by truncating

the series after a small number of terms. The matrix functions
“are computed as follows:

n =¢'yn—1 + Wy Uyt Wy Uy

ég k=0
+

3‘The integration formula (7) has excellent stability and is of

i
i‘o‘rder m + 1. It has exactly the same general form as (6), and

%an be implemented in the same way, i.e., by solving for y,, at
?each iteration in the solution of (2). The matrices in (7) are
unctlons of A, B, and h. Provided that variation of machine

ctance with saturation is not represented, they are recalcu-
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lated only when the step length 2 changes, and of course (7)
constitutes a set of smaller separate matrix equations, one or
two per machine, Thus the matrix exponential method can be
considercd as a direct alternative to the implicit multistep
method, particularly to Lhe also-self-starting Trapezoidal rule.
Some comparative comments are:

a) the formula (7) is self-starting for all orders; b) the as-
sumption of linear variation of u over the step introduces a
small approximation in the use of (7), which may nullify the
advantage of high order; ¢) the calculation of the matrix func-
tions in (7) is morc complicated and time-consuming than the
equivalent work in (6)—this disadvantage is pronounced if the
functions have to be evaluated repeatedly due to saturation
and step length changes, especially’ with high-order versions
and detailed models; d) matrix powering sacrifices sparsity,
incurring a storage and computational penalty, again especially
for high orders and detailed models.

The use of partitioning and successive block substitution as
described in the last section can alleviate considerably the dis-
advantages of the Matrix Exponential method described in
points ¢) and d) above. There have not been any large-scale
applications of the method in the Partitioned-solution inter-
facing approach. However, the method has been receiving
attention due to very successful results obtained in a hybrid
integration scheme which has been  classified in  the
Simultancous-solution category (see Section VIII-E).

VIL. Tie MODELING AND SOLUTION OF NiTWORK

A. The Network Model

The nctwork model comprises the loaded transmission
system plus the machine stators. In order to construct and
solve the network equation (2a), the d, q-axis stator equation
(A.6) of each machine has to be expressed in the form (A.8),

TS

e., transformed into the network complex reference frame. -

From (A.8), the stator internal voltage is now e +jEim and
the stator impedance is Z;.

In (2a) as originally stated, the nodal injection at a machine
terminal bus is the machine stator current, obtained by solving
(A.8). There is some advantagé in taking the Norton equivalent
of each machine stator. Then a shunt impedance Z; is inserted.
at the machine terminal bus, and the injected current becomes
(Efe +iEim )/Zs. The network equation (2a), restated here for
convemﬁnce now becomes: :

KE,V)=Y" -V (8a)

where Y includes the machine-terminal Norton shunts. Vector
I comprises the machine-terminal Norton injections that are
functions of £ and the load-bus currents that are functions of
voltage magnitude and perhaps frequency.! This form of the
network equation will be assumed henceforth, unless otherwise
stated.

Whenever a machine has no dynamic saliency, X('j is equal to
X(',, and the T’s in (A.8) cancel each other out. Z; is thena
constant complex impedance.

However, when there is saliency, Zg is nonbilateral and also
changes with rotor angle §. Nonbilateralism means that Z;
and therefore equation (8a), cannot be written in complex
form or solved by complex arithmetic.

1 The focal frequency at a bus is measured by the rate of change of its
bus VOltage angle. It is obtained as a filtered extrapolahon from stored
previous values, and is assumed constant over an integration step.
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We must consider two cases. One is when all Z,’s are non-
salient, so that (8a) may be written as a complex equation:

IC - YC . VC (Sb)
where superscript ¢ stands for complex. The other case is when

any of the Z’s are salient, so that (8a) must be written as a
real equation, expanded into its real and imaginary parts:

19=Y€’. Ve (80)

where superscript e stands for expanded, and it will henceforth
be assumed that siructurally, each complex admittance ele-
ment in (8b) has beer. replaced by a 2 X 2 real block in (8¢).

Equation (8b) is haif the order of (8c). Matrix Y¢ is usually
symmetrical (if there are no phase shifters represented in it),
while Y¢ is unsymmetrical. Then the latter requires 3-4 tlmes
the storage of the former.

'B. The Network Solution Problem

The problem is to solve either (8b) or (8¢c) for ¥. For a given
value E, obtained from the solution of the differential equa-
tions (1), the machine-bus Norton injections and shunts are
constant.? The nonlinearity of (8) is then due entirely or
mainly to load currents that are functions of V. Unless all
loads are represented as fixed shunt impedances (injected
current always zero). an iterative solulion of (8) not unlike a
standard load-flow solution [31] needs to be performed.

For mid-term and long-term dynamic studies, excitation con-
trol is assumed to hold the machine terminal (or other bus)
voltage magnitude constant [24], [25], whichintroducesa con-
ventional constant-V load-flow constraint into (2a). When
automatic transformer tap changing is represented in longer
term studies, the relevant admittances in ¥ can change fre-
quently. Very occasionally, network branch admittance varia-
tion with frequency is represented, in which case the elements
of Y change continually. Such network changes can be dealt
with by bus-injection techniques to avoid continual matrix
alterations.

C. Network Solution Techniques o

In this subsection, we consider fouf/alternative methods for
solving (8). Only the last two ar{now regarded as of interest
for efficient modern large- -scale industrial applications, but
programs employing the first fwo are still in practical use.

1) Gauss-Seidel: This method has the merits of low storage,
ease of programming, and of being able to accommodate any
changes in the matrix elements with ease because the algorithm
operates directly on the branch admittances.

The economical complex-symmetrical storage scheme can be
used in the programming, éven if nonbilateral elements are
present. Since the Norton admittances are usually large, ¥ is
better conditioned than in the standard load-flow case. Except
at fault and switching times, each iterative solution has good
starting values of ¥ from the previous solution(s), preferably
extrapolated.

Usually, the “load-flow” problem has no voltage-controlled
(PV) buses, in which case the best convergent version seems to
be the secondary correction method [31]. Nevertheless, con-
vergence to acceptable accuracy can vary a great deal from
problem to problem, from 2-3 iterations to hundreds (or no

2 Not strictly true if machine saturation is being represented rigorously.
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convergence) in difficult cases. The Gauss-Seidel method is
best suited to approaches using small integration steps, so that
the starting point is close to the solution each time.

Unwanted passive buses (buses with zero injected current)
can be eliminated [34] from (8), giving the reduced system

I,=Y," V. 9)

This may increase the total number of nonzero elementsin Y
and thus the computation per iteration, but usually improves
convergence. Reduction prevents immediate access to the
eliminated buses and associated branch flows, but efficient
techniques for recovering these are available [34].

2) Z-Matrix: The direct solution of (8) is obtained by in-
verting Y

V=2Z-1 (10)
where Z is nonsparse. This method has only been applied lo
the complex version (8b) in which Z remains unchanged in
between switching operations {35]. Any nonconstant ele-
ments are incorporated into I, and (10) is solved iteratively for
V, updating I every iteration. Extrapolation prov1des good
starting values for I. Convergence is usually fmrly rapid
(2-6 iterations).

For large systems, even using the best inverse-matrix as-
sembly and modification techniques, the computation for ob-
taining and updating Z is unattractive, Much worse, the
computation per iteration and the storage are excessive. To
keep the order of the nonsparse equation down, all unneces-
sary passive buses should be eliminated. Z-matrix methods are
now quite obsolete in thls and most other large-scale network
applications.

3) Factored Y: Sparsity-programmed ordered triangular fac-
torization [36) provides a modern approach to the direct solu-
tion of (8) for V. The sparse LDU faciors of Y are obtained,
enabling (8) to be expressed as:

I=L-D-U-V, (1

When Y is symmetrical (the complex version), L is the trans-

,,——-/pose of U and need not be computéd or stored. Storage is then

typically around 50 percent more than for Gapss—Seidel. if
asymmetry is due only to a few terms, it is possible to store
only the affected columns of L.

Equation (11) is solved for V in terms of I by forward and | :

backward [ substitution, so that the iterative scheme is the
same as for (10), except that (10) may use a successive-
displacements mode, while the former is necessarily
simultaneous displacements. This advantage of the Z-matrix
approach is completely outweighed by the much-greater speed
of the sparse method.

The factorization of (11) should use a good bus ordering
scheme to minimize the number of nonzeros in the factors,
since the solution is to be repeated many times. In power
system networks, the nonzeros, and therefore the solution
time and storage increase almost linearly with size. Factoriza-
tion takes between 3 and 6 times as long as a repeat solution.
A repeat solution takes only about 50 percent longer than a
single: Gauss-Seidel iteration; as a result, it is extremely diffi-
cult for the latter to be competitive.

Note that the number of arithmetic operations required for |

sparsity solutions of the complex and real versions (8b) and
(8¢) are very similar to each other. The former will be a little
faster due to fewer operational overheads.
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Sparsity-preserving network reduction can be performed
[37). Unwanted passive buses are eliminated in an optimal

* order only as long as the total number of nonzeros in the

matrix factors continues to reduce.

4) Newton Method: The Newton method cannot be applied
to most power network equations in complex form; therefore
This equation can be
written as

Fe=r°-Y° pe (12)

where F'¢ is zero at the solution. Each iteration of the Newton
solution requires the construction of the Jacobian-matrix
equation:

F¢=-J¢-AV® (13)

and its direct solution by sparse triangulation for the correc-
tion vector AV ¢, This solution corresponds to the “rectangular
current mismatch” Newton load-flow method, which is the
natural version for the stability application although it is less
so for conventional load flow [18], [31], [38]. When, as is
usual, the series branches of the network have constant admit-
tances, the Jacobian matrix J¢ differs from Y ¢ only in the bus

- “self” terms—those in the 2 X 2 diagonal blocks.

A strict implementation of Newton’s method, with quadratic
and reliable convergence, updates J° in (13) every iteration.
This demands an expensive triangulation of J¢ each time, and
is too high a price to pay, as confirmed by comparative studies
Therefore. a compromise is adopted, using the same
triangular factors of J¢ for several or many consecutive itera-
tions. A practical criterion for reforming ahd factoring J€ is
5 iterations, or

Naturally, con-

practical accuracies.

It should be noted that the decoupledifacobian techniques
that have achieved popularity in convegtional load flow {31]
are not appropriate in the network solution, because MW and
MVAR flows are highly interactive/during dynamic system

4 conditions.

' D. Network Solution in Relation to Modeling

~
Modeling plays an impaortant part in determining which solu-

it tion method to choose-for the network equations, and how to
| interface them wit?/the differential equations.
¢ modeling aspects aré machine dynamic saliency, nonimpedance

The critical

bus loads, and machine saturation. Only the factored-Y € and
Newton methods/are considered here.

Although a modern general-purpose stability program is
hkely to cater for the whole range of modeling details, it may
kb useful to give an item-by-item account of the computa-
F tional consequences of the different individual model options.

i 1) The Simplest Model: Let us first consider the simplest
case where there is no saliency, saturation, or nonimpedance
b loads. Then the Norton impedance of each machine, and the
k representation of each bus load, are fixed complex shunt
branches. The network equations are most economically
t handled in the complex form (8b), where Y€ and its factors
are (usually) symmetric, and constant in between switching
operations. I€ is a function of E only; so, for a given E, an

Bexact nonitcraiive solution for V¢ is obtained rapidly from
¥ 4 repeat solution using (11).

.usually be offset by the exira factorizations of JE.
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2) Machine Saliency: Now suppose that machine dynamic
saliency is introduced into the above simple model. The
Norton shunts are nonbxlateral and, in theory, the expanded
form (8¢) must be used. A noniterative exact solution of (8¢)
for V¢ is then possible, but since the shunts change every time
E . changes, continual refactorization is necessary. This is
prohibitively expensive, just as it is in the Newton method.

‘A practical alternative [18] is to insert into Y€ a constant
complex approximation to each Norton shunt, thus retaining
the complex equation form (8b). To compensate for this ap-
proximation, a correction term as a function of V¢ is added to
I€; so an iterative solution becomes necessary, performing re-
peat solutions of (11) for ¥ and updating 1€ each time until
converged.

Whether or not the need for iteration in this manner is a
drawback depends on the integration/interfacing method. If
the interfacing scheme itself is noniterative (e.g., with ex-
plicit Euler, open multistep formulas and Runge-Kutta), then
iteration for dynamic saliency on its own is a great nuisance,
to say the least. Reference [27] circumvented the problem
by standardizing on a subtransient machine model (even if
morc detailed than required by the studies). Subtransient -
and g-axis reactances are almost equal to each other, and can
be approximated as nonsalient. (A dummy rotor winding
can be added in the differential equations to compensate for
the error thus introduced.) Subtransient time constants are
smaller than transient ones, but these may still not be a limita-
tion on the performance of the integration method if some of
the excitation-control time constants are even smaller.

When iteration is imperative for interfacing or any other rea-
son, then the factored-Y¢ approach usually introduces no
computational penalty. Used in the block-successive iterative
scheme with the Trapezoidal rule, reference [18] quoted 2-3
iterations as typical per integration step, which includes elimi-
nation of the interface. These figures were confirmed using a
similar program (reference {45] and author’s experience). The
method runs into very occasional convergence problems which
[45] counteracted by a form of acceleration.

In the Newton network solution method, the Jacobian ma-
trix is constructed from Y¢ by adding to the 2 X 2 diagonal
block for each machine the partial derivatives of /i, and [y,
with respect to V;e and Vi, respectively, as in (13). With
nonsaliency, equation (13) is equivalent to the factored-Y ¢
method. In fact, the latter could be regarded almost as a New-
ton method with a constant approximation to the Jacobian
matrix. However, there is one important difference—Newton’s
method inserts into J¢ an incremental model of the machine
stator, formed about the last point of linearization, whereas
Y ¢ contains a nonincremental and, therefore, a less accurate
abproximation. Thus Newton’s method, with J¢ updated at
intervals, is somewhat stronger in convergence, and may re-
quire fewer iterations. In the interlacing scheme, this will
depend on the overall convergence rate. Any savings will
In cases
of difficult convergence, however, when the network is ill-
conditioned and some machines have high saliency and large
rapid rotor angle swings, Newton’s method is at a definite
advantage.

3) Nonimpedance Loads: Nonimpedance loads are dealt
with in a similar manner to machine saliency. In the factored-
Y ¢ approach, a proportion of each load is represented as a
fixed complex shunt in Y ¢, and the residue of the load enters
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I€ as a nonlinear function of V€ to be iterated to convergence.

Low-voltage cutoff must be provided so that for instance con-

stant-power loads do not demand infinite current during a
solid fault. In standard Z-matrix load flow, this “fringing cur-
rent” technique was found to aid convergence considerably.
Here, it is valuable though not equally successful because of
the much greater bus voltage variation. Both [18] and the
author have found that typical numbers of iterations are 2-6.
In other words, nonimpedance loads cause more trouble than
dynamic saliency.

In Newton's method, partial derivative terms are added to
the 2 X 2 diagonal blocks in J¢ to represent the loads incre-
mentally, and this is better than the nonincremental fringing-
current modeling. Newton’s method is now noticeably supe-
rior, and the above-mentioned numbers of iterations reduce
to 2-3.

How accurate the solution for nonimpedance loads must
be is a matter for some conjecture, since the load character-
istics are rarely well known. On the other hand, it is widely
agreed that some improvement over the classical fixed-im-
pedance model is necessary [12). Reference [27] investigated
the effect on accuracy of keeping the load current constant
over the step (which was essential in that Runge-Kutta method
with a noniterative network solution.) The results and the
discussion of the paper suggest that the errors only become
important for marginally stable longer duration studies. Using
voltage extrapolations to estimate the required intermediate
load currents would be more reliably accurate.

4) Machine Saturation: Papers describing specific stability-
calculation methods most often ignore saturation. As already
seen, it introduces unpleasant complications in otherwise-
elegant integration algorithms such as (6) and (7). The in-
ference is that it is not always represented. Where this is the
case, justifications have been based on the proposition that
saturation has a small cffect on stability, and that neglecting
it is in any case conservative, since it effectively reduces
machine reactance. However, this is an arguable point, and
there are many cases where the representation of saturation
makes a major difference to the calculated system response.

In the network solution, its treatment is again sxmxlar to that

of dynamic saliency. The stator impedances X, 4 and X are

now modified by saturation factors that depend on the Potler
voltage (a function of ¥ and E). In the factored-Y € method,
to preserve the Norton shunts constant, an exira correction
term is added to thie bus injected current to be included in
the iterations. Usually, this does not affect convergence, but
counter examples have been found. If the network solution
is in all other respects noniterative, it becomes computationally
desirable to approximate saturation as constant over the step
(with extrapolatlon where needed).

In pnncnple Newton’s method is again at an advantage be-
cause extra partial derivative terms can be added to the 2 X 2
diagonal blocks of the Jacobian matrix, giving good conver-
gence properties. However, these terms can be quite analyti-
cally comph ed, and some approximation might be preferred,
even handling satur'mon in an outer loop as in the factored- Y¢
appro/ach/

Safuration is the least standard feature of machine modeling.

_~A much more convenient though less rigorous representation
/ is not to modify the stator reactances at all, but to modify the

stator internal voltage instead. Another scheme is to modify
the differential equations describing the machine.
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With respect to exciter saturation, neglecting it implies far
better regulation response than actual, which will generally

lead to an optimistic solution,
t

VIH. THE SIMULTANEOUS-SOLUTION APPROACH
A. General

The Simultaneous-solution approach was classified as one
in which the variables y and x in (1) and (2) are by defini-
tion solved simultaneously with each other. All the integra-
tion methods used are implicit, and interface error is elimi-
nated. Many of the issues relating to the integration methods
and the network have already been covered in Sections VI and
VI1, and will not be repeated here except where there are im-
portant differences.

B. Multistep Integration

In this approach to the differential-algebraic problem, pos
sibly attributable to Gear [39], the differential equations are
algebraized using an implicit formula as in Section VI-F and
(5). We can then write (5) and (2) together as

Fy=yp,-khf(yn,xp)-C
Fy=8(yn,xn)

where the F’s are zero at the solution. Newton’s method is
used to solve this set, requiring the construction and solution
at each iteration of the sparse Jacobian matrix equation

(14a)
(14b}

F, Jy J, Ay,

=- ’ (19
g J3 J4 Ax,

Fy

where J, =3F /8y, J, =0F[dx, J3 =0F /3y and J4 = 0F,[dx.
Good starting values of y,, and x,, are established by extrapola-
tion. Being a Newton method, all the modeling details such as
saliency, nonimpedance loads, and saturation can be incorpo-
rated without difficulty.

The above approach was first used by IBM [20], [40] desng
nating the set x as the bus voltages V¢ and bus currents /.
Vorley [41] and Boeing {2] obtained a smaller Jacobian ma

trix equation by designating x as V€ only. This more compacl :

formulation means inserting the analytical functions for #
from (2b) directly into (1a). Equation (14) then becomes

Iy = (8- khd] -y - khB u(yn, VE)-C (16
1"2=Ig(yn,V,f)-Yg'V,f (164

References [40] and [41] both used Gear’s stiffly stable
formulas in variable-order variable-step codes in comparative
tests against other programs using detailed models. The IBY
comparisons against a production Runge-Kutta program using
h=1/30 s. showed speed improvements of 2-6 times ova
stable system responses of duration 5-30 s. For unstable sys
tem responses, the timings of the two programs were similar
Vorley ran tests against a production program that uses the
implicit Trapezoidal rule with factored- Y € network solution
(i.e., the method of [18]) and found the Trapezoidal program
generally a little faster, though not as reliably convergence il
large step lengths in marginal cases. It was also found that the
higher order formulas did not show to advantage during the
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ally 3 due to switching and limiting. However, it is likely that they
. would become more efficient over longer stable response.

In their tests, comparing a variety of methods and techniques,

fears about falsely stable solutions and difficulties with limits

and fast compounents using the stiffly stable formulas causcd

o.nc Bocing to consider a version using the Trapezoidal rule only.

fini- The tests concluded that this is significantly more efficient
ogrn- than any explicit Partitioned-solution method.
11::::; i C. Matrix Solutions in Multistep Integration
Cand 3 Each integration step consists of the iterative solution of
> im- 1 (14) using the algorithm (15). As in the Newton solution of
the network on-its own (Section VII), it is too expensive to
1 construct and triangulate the Jacobian matrix at each itera-
tion. True quadratic convergence is sacrificed by using the
pos- f same LU factors over successive iterations and steps, with a
. criterion of maximum number of iterations and/or divergence
;s ar:; | 1 for updating the factors.
an #.  Submatrices J,, J,, and J3 are composed of separate ma-
. chine blocks, and J4 is exactly the same as J€ in the Newton
(14a) ; . network solution (13). The machine blocks have no interac-
b D g tion with each other during the triangular factorization, except
(14b) A through the network portion J4 of the Jacobian matrix. To
10d is B illustrate, suppose that we have performed Gaussian elimina-
ution ! tion on all columns to the left of J4; then all that has hap-
: ; pended to J4 at this stage is that each of its 2 X 2 diagonal
! " blocks has acquired some additional terms from the machines
Sl connected to its bus. Thus it is sensible not to construct and
488 solve (15) as shown, but to treat J,, J,, and J; separately,
(15) ‘ machine by machine, and then handle only the network por-

tion as a whole.

Reference [2] offers a scheme to achieve this, described as
follows,® on the understanding that the relevant submatrix
operations are performed on a per-machine basis.

1) When updating the Jacobian matrix: Compute the new
matrix elements. Compute a 2 X 2 blockAdiagonal ma-
§\rix -J3 -J{Y - J, and add this to J4 to give J4. Factorize
Js.

2) When performing an iteration by solving (15): Compute
a vector -J3 *J{! *F, and add it to Fy to give F,.
Solve the network equation f4 “AVE =1?2, Compute

| Ay =J{'F, -J, " AVE,

i As in Section VI-H, analytical solutions involving the ma-

‘chine component blocks can be derived and coded directly
to the program. For example, an analytical expression for

i-J3 'J{’ -J, can be obtained and then used to compute the

;}l‘umerical values to be added to J4 in stage (a).

=
L
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. Additional Comments on Implicit Multistep Integration

When examining the detailed implementation of these meth-
ds in the Simultaneous-solution interfacing approach, some
isubtle similarities with the corresponding Partitioned-solution
LYersions}y:erge. Let us start by notingthat it is by no means
“sssential’to use the strict Newton algorithm (15) for the simul-
g}-tm}eoﬁs solution of (14). For instance, we have already seen

Hat in the interests of computational economy the Jacobian
¥ matrix in (15) may be approximated as constant over a num-

olutions '§
program.

gence ity
that the
ring th

3The reader may derive this scheme by writing (15) in partitioned
orm, expressing Ay as a function of Ax, eliminating Ay, solving for
Ax, and finally solving for Ay.
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first couple of seconds of the response, because of restarting.
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ber of iterations. Other approximations that serve the pur-
poses of economy and/or reliability and/or simplicity are
permissible. Suppose that in (15) we neglect the coupling
submatrices J, and J3. If we continue to iterate in the same
simultaneous-displacements manner, convergence will have
been noticeably weakened. But the differential and algebraic
components have been algorithmically decoupled, and we can
change to a block-successive iteration scheme. That is, a New-
ton iteration using J, and F, is performed to calculate Ay,
and, hence, to update y,. The new value of y, is used in con-
structing F, to perform a Newton iteration with J4 to re-
evaluate Ax,, update x,, and so on. This scheme is none
other than a straightforward Partitioned-solution version
using Newton network solution as described in Sections VI
and VII. Overall convergence is good, and generally even
faster than (15), at least for the first couple of iterations
(typically 2-3 are needed in total). The methodology is pre-
cisely the same as that used to develop the decoupled Newton
load flow [311].

The above Partitioned-solution version has the advantages
over (15) of lower program complexity and somewhat re-
duced work per iteration. It is just possible that (15) could
be more reliably convergent in extreme cases, primarily when
the interface variables are changing rapidly and the step
length is big. On the other hand, any form of accuracy con-
trol will not permit large steps in any case during such periods.
This convergence comparison is one of the main questions to
be answered at the present state of the art in the short-term
stability calculation. If it turns out that (15) is not funda-
mentally more reliable, there is no reason to use it. The Par-
titioned interfacing scheme retains algorithmic flexibility. For
instance, the network may not be solved at each integration
step, or the machines or machine components may be solved
with different integration step léngths when and if any such
measures are seen to be attractive.

There are also various hybrid possibilities of unknown or du-
bious value. Simplifying approximations to J, and J3 in (15)
could be made. The differential equations in (15) could be
partitioned as in Section VI-H, and iterated block successively.

E. The APS Method

The APS method has something in common with the one in
Sections VIIT-B and -C. It likewise achieves the Simultaneous
solution of all variables during an integration step, using ' a
separate Newton network solution where each 2 X 2 diagonal
block of the Jacobian matrix receives additional terms obtained
by reducing the equations of the machines connected at its
bus. However, the big difference is that instead of successively
substituting incremental algebraized machine equations into
the network equation, which is relatively easy and general,
the APS method succeeds in substituting the algebraized ma-
chine equations themselves. This involves some considerable
heuristic algebraic manipulation, which is not reproduced here.

Implicit integration formulas of the types (6) and (7) can
both be written, inserting the expression for u from (2b) into
them (see (A.9)-(A.11)), in the general form:

Yn=M ulE,, Vi)+K a7n

where matrix M and vector K are constant over the step and
¥n contains E, as a subset.
The machine stator currents can be expressed in the net-

work complex frame by premultiplying (A.9) by the trans-
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"1 as some function
=f5(En, V§). (18)

The nonlinear functions in (17) and (18) are fairly compli-
cated. However, for standard machine models it is possible
to solve (17) analytically for E, in terms of V<, and sub-
stitute this expression into (18) to give the stator currents
as a function of V¥ only. These currents are the machine
contributions to the network bus injections (in this approach
we need not think in terms of a Nerton equivalent of the
machine stator).

Then the network equation (12) loses its dependence on F
and becomes

formation operator T

C=I%Vi)-Y® Vg (19)

where F€ is zero at the solution. We can now solve (19)
iteratively by Newton’s method for the bus voltages, from
which each stator current in the complex frame may be cal-
culated. These are already the final values at the end of the
integration step. Now the machine air gap power P, can be
calculated directly. Happily, it turns out that the machine
rotor angle §,, is a function of P, only, and can therefore be
obtained. With it, the stator currents are transformed back
into the machine d, q frame, and using (A.9), E, is found. Fi-
nally, the variables y,, are calculated directly from (17). The
only iterative process in the above integration step has been
the Newton network solution, yet interface error is eliminated.
Convergence problems are minimal.

Basically, the integration method used in (17) is the Matrix
Exponential method of Section VI-I; but, in order to make
certain manipulations tractable, the Trapezoidal rule is used
for a couple of differential equations. This partitioning
weakens slightly the stability properties of the method as a
whole, and [2] shows that falsely stable solutions could be
obtained with sufficiently stiff problems. Nevertheless, the
method is found to perform very well in the APS production
program,

Efficiency tests comparing this method with the Trapezoidal
rule as used in Section VIH-B were inconclusive about which
is better {2}, and the choice between them may rest on other
factors, such as flexibility and simplicity for program mainte-
nance. The algebraic manipulations mentioned above depend
on the particular structure of the machine model. It is not
clear if the method can handle saturation efficiently, or special
models, or certain fairly standard features such as where the
excitation-control signal is taken from a remote bus.

The general APS methodology can accomodate certain
variants. It would be possible to replace the Matrix Expo-
nential method throughout by an implicit multistep method.
The obvious candidate would be the Trapezoidal rule, in
which case it is speculated that the performance would be
very similar, with the advantage of greater simplicity. The
network could be solved by the factored-Y ¢ method, nibt
that this would in general be as good as Newton’s methad.
In the extension of the APS method to cover longer te1‘:m
dynamics, the network is not solved at every integration
step.

F. Laplace Inversion

There is an interesting class of highly stable implicit meth-
ods based on Laplace inversion {42]-[44]. Apart from its
stability, the approach has the attractions of being self-starting
and completely noniterative, and very-high-order versions cost
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commensurately little computation. The method was tried on
detailed multimachine power-system problems in [41] and
{45]). The following is a brief outline, paraphrasing the de-
scription given in [54].

Let us linearize (1) and (2) at the beginning of the current
integration step, obtaining

Jl —‘g[)_ .,2 y

= (20
.,4 X

J3

where p is the differential operator, vector M is constant, and
the Jacobian matrix elements are very similar to those in
(15);in fact,J3 and J4 are the same.

The inverse of (20) involves the exponential of its square
matrix. To solve for y, and x,, it is necessary to evaluate
this exponential numerically, for which the stable Padé -
tional polynomial approximants are used. Choosing computa:
tionally favorable approximants, the integration over a step
becomes expressed by the formula

Yn :
@n

where L;=H; K;.

N
= 3> Re{K;},

i=1

Here, H; is the matrix in (20) with the operator p replaced by
a given complex constant o;/h, and L; is a given complex vec-
tor containing y,;.;. The order of the method is 4N - 1.
Thus choosing N =1 for instance, a/thlrd order method is ob-
tained at the cost of solving one large sparse equation to ob-
tain re {K,}, each integration step. For a nineteenth-order
method, five such equations have to be solved each step.
Reference {41] applies versions up to nineteenth order to
the power-system problem. In general the linearization error
is dominant, and discourages the versions of higher order than
3 from showing to advantage. This third-order version was
found to match the accuracy and maximum step lengths ob-
tainable with the implicit Trapezoidal rule. Reference [45]

introduced several extra sophistications into the method, with

mild inhprovements in performance.

As usual, the matrix equation in (21) is solved by first reduc-
ing the equations separately for each machine, then adding the
resulting terms to the diagonals of J4, and then performing 2
network solution. This noniterative scheme might be compet-
itive with the Trapezoidal rule, were it not for the fact that the
equatlon is complex (and not much saving can be made by ex-

'ploxtmg the simplicity of the imaginary part of H). Asitis,

the Laplace inversion approach may possibly be more profitable
in other applications, such as small-perturbation dynamic anal-
ys1s where enormous steps can be made with numerical sta-
blh‘y and accuracy.

it
.:' 1X. FURTHER ASPECTS OF THE PROBLEM

A Specml Techniques for Stiffness

Problem stiffness arises from the fact that some system
variables vary slowly, while others respond very rapidly.

Stiffness is thus very much dependent on detail of modeling, -

particularly in the machine control circuits. Some stiff com-
ponents are quiescent, meaning that they produce small
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E amplitude ripples on the main response. Stable integration
imethods can handle these very well, while the less stable
k' methods can avoid difficulties only by using very small step
&8 lengths.  Other stiff componcnts undergo large-magnitude
N oscillatlon usually only for a short time following a major
= disturbance after which they damp out and become quiescent.
Stable methods are also better at handling the rapid large-
; lmplltude responses. Nevertheless, unless the integration is
fccurate enough (e.g., small step lengths) even stable methods
: ,,urmot reproduce accurately these responses, but instead have
| 3 filtering effect on them. Whether this is dangerous or not
‘-»depends on the influence of the relevant variables on overall
fnachine and system stability. In programs using explicit
emethods or in other words nearly all existing industrial sta-
blhty programs, it is mandatory to protect against the need
‘or extremely small step lengths to cater for the stiff compo-
gents The following measures have been taken in various
iprograms.
It 1) Model Modification: Machine and control-circuit time
B constants are checked at data input. Any that are below cer-
hin rule-of-thumb values, found by experience with the pro-
m, are rejected. Then either the model is reduced by
?mlttmg the representation of the relevant fast-varying com-
Enents or the short-time constants involved are artificially

inereased to some computationally acceptable levels. This
alytically primitive approach has often been found to be
equate for enginecring purposes. However, considerable
xpenence is needed to strike an intelligent balance between
iihe engineering/modeling and analytical/computational as-
¢is of the simulation problem. Even where this experience
X ailable, it is easy to foresee cases where fast components
hich have a significant effect on the dynamic response are
pitted or modified erroneously.
Mixed Integration Step Lengths: The stiff parts of the
Btoblem may be solved with different step lengths than the
fohstiff parts. This has already been noted in the context
f not solving the network equations every integration step.
¢ method is applicable only to the Partitioned-solution
roach. .
lven some nominal value of i, the program can choose at
, I input the step length A/m (m integer) required for each
' f vidual machine, based on the smallest time constant in that
chme s equations. Thus while the network is solved at in-
Rlvals of &, different machines are integrated using step lengths
/2, h/3, or h/4, etc. Such a scheme relies on the extrapola-
\ of u and/or V as described in Sections V-D and E. Inter-
error cannot be eliminated, but can be controlled by
tegratlon
‘vanant on the scheme is to choose different step lengths
8 individual differential equations or the individual parti-
[ned machine component blocks (see Section VI-H). In this
R ¢, the small-h integration steps requiré extrapolated values
certam linking variables in p that are being integrated at
; l rh.
) Mixed Integration Methods: It is possible to apply dif-
Blent integration methods to the stiff and nonstiff equations
l a machine, the raticnale being that the stiff components
od a stable method, whereas the nonstiff components can
solved with comparable accuracy by a perhaps less-stable
lhod that is simpler to implement [19]. A satisfactory
lementatlon of this idea depends very much on the' pre-
formulas chosen, and the details of interfacing. In gen-
i it is easiest to apply with explicit integration methods,

certam combinations of formulas permit an explicit/im-
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plicit mix, or an all-implicit mix used either in the Partitioned
or Simultaneous-solution modes. Viewed from the basis of
stability alone, the argument for this scheme does not appear

to be too strong. A stable method that can handle the stiff

components also tends to perform well on the nonstiff parts,
even better than a more-accurate less-stable method (see the
comments in Section VI-G).

4) Formal Dynamic Reduction: Rather than remove the
stiff components of the problem heuristically by modifying
time constants, eliminating transfer-function blocks, or chang-
ing from subtransient to transient machine models, etc, sys-
tematic model! reduction can be carried out. The unwanted
eigenvalues are removed from the linearized model. This may
change the structure of the equations. The method is most
acceptable when applied to the truely linear nonlimited equa-
tions of the machine, especiaily some control circuits. Other-
wise the approach is reserved for studies requiring less detailed
modeling in the relevant machines or parts of the system.

B. Limits on Variables

Limits impose important constraints, at least during the
short-term simulation, on the design and performance of the
overall solution method. Upper and lower limits on certain
variables in the machine control systems are violated at ran-
dom times. The most critical are usually those in the excita-
tion control, where modern equipment can force the field
voltage and stabilizer signals against limits very rapidly.

The computational situation is worst when the machine is
going unstable and the variables bang up and down. In a
study where a large number of machines is represented in de-
tail, limiting activity is often widespread, although it will
typically be most concentrated in the first second of the
response period.

Large integration steps cannot be used to track these events!
accurately. When very small step lengths have to be used be-
cause the problem is stiff and the integration method is un-
stable, limits can be enforced easily and accurately enough.
Once a variable has violated its limit, it is simply clamped at
the limit. The effect is not properly transmitted to the rest
of the equations until the next step. With methods using
larger values of i, simple clamping is not satisfactory (although
it still appears to have been rather widely used). Having
clamped a variable, the whole system should in theory be
resolved.| In a method such as implicit Trapezoidal, for in-
stance, this means taking an extra iteration or so during the
integration step. In practice, for the sake of economy, only
the relevant control circuit or the whole machine may be
resolved. Integration methods that use previous values need
to be restarted after limit enforcement. Again, it may be
enough to restart only for the control circuit or the machine.
Limit backoff should be treated the same as limit enforce-
ment. A clamped variable remains on its limit until backoff
is detected by testing the sign of its derivative [18].

How accurately the limit on/off points must be simulated
depends on the influences of the relevant variables on overall
stabxhty It appears that in many cases there is a lot of margin
for error without affecting the machine rotor angle response
notxceably However, the error could make an enormous dif-
ference in critically stable systems if a large value of / is used.
Consider for instance such a system being solved with a step
length of 0.1 s (which several workers have found to be usable
in various cases). Then the exciter output or turbine power

could stay on or off limits almost 0.1 s too short or too long. -

which would distort the calculated response considerably.
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A result of the above problem is that there is no possibility
of using very large step lengths during periods of solution
roughness. Thus to no little extent, the presence of limits
sabotages research efforl to develop more powerful integra-
tion methods that can take large steps economically during
the short-term response period.

In one sense, there is a very good case for solving the limit-
ing control circuits with smaller step lengths than the other
equations. This is compatible with the previously mentioned
use of mixed step lengths to cater for stiffness since the fastest
variables are often the ones with limits. However, mixed step
lengths rely on the use of extrapolation techniques, which
themselves introduce approximation. A self-starting integra-
tion method is particularly desirable when dealing with limits,
and there may be some advantage in using mixed methods as
well as mixed step lengths for this purpose. Such schemes
have been used with simple explicit integration methods, at
the expense of additional program complexity. They would
be more difficult to implement with implicit methods, and it
is not known how much the net benefit would be, if any.

As a final note, care should be taken when interpreting the
model and programming the enforcement of limits. It is quite
easy to put the limit in the wrong place relative to the transfer-
function block, and thus alter its effect.

C. Solution Accuracy/Speed Considerations

Ensuring a reliably accurate solution while minimizing solu-
tion time is the essential problem facing the developer of a
stability program, since the two objectives are mutually op-
posed. The total error at any stage in the solution is an un-
known function (some cancellation, some accumulation) of
the errors generated at all previous integration steps (see Sec-
tion II-C).

The only practical way of trying to keep the global error
within acceptable bounds is to discover roughly how much to
constrain the generation of local errors by a process of experi-
mentation with the program on different problems. The most
important means available for influencing the local error is
step length selection. As h is reduced, the errors due to trun-
cation, approximation (e.g., extrapolation, linearization), in-
terfacing (if any), and limit-simulation all diminish. Other
sources of error not directly related to step length are arith-
metic precision and inexact convergence of iterative processes.

Most short-term stability programs still use fixed step
lengths. To tune such a program for accuracy/speed, many
cases have to be run with different step lengths, making in-
telligent adjustments to convergence tolerances, extrapola-
tion techniques and orders, matrix refactorization criteria,
etc., as appropriate. To check the global accuracy of a given
solution, all that can be done is to compare the response with
supposedly more accurate ones (e.g., ones obtained with
smaller k). It seems that program tuning is more of an art
than a science. The optimum tuning is different for different
power system problems; therefore some tuning policy is re-
quired. Typically, the program will be “optimized” to give
economical solutions on the most common range of prob-
lems, rather than completely reliable solutions in all cases.
Then there should be some device in the program to warn
the user if excessive local error at any integration step is sus-
pected. He then has the option to rerun the study at a smaller
h.

As regards the values of the step lengths used in practice,
there is not a wealth of concrete information in the literature.
Research papers usually present results of tests based on in-
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complete or unrealistic system models. Competitive industrn
is cautious about publishing too many performance figures
about their programs, for obvious reasons. Step lengths art
often quoted in cycles, which is nol wilhout special signifi
cance. With the less-stable integration methods, it is advan
tageous where possible to use integral multiples of cycles.
since the errors due to supply-frequency components (oftes
quiescent) then tend to cancel out over successive steps.

With explicit methods such as Runge-Kutta, 2-4 cycle
seems typical for nonstiff problems, but much less for stiff
problems. Some programs choose h automatically at dah
input on the basis of the smallest time constant (say 5-10
times less).

Using implicit integration, the same range 2-4 cycles can
accomodate stiffness. It would frequently be possible to ux
higher values of h, except for the problems of roughness and
where fast nonquiescent components need to be solved mort
accurately.

It should be noted however that in terms of total computing
time, the largest steps commensurate with accuracy are not
necessarily the best. Increasing # too much reaches a point
where even with good extrapolation or prediction methods.
the numbers of iterations per step increase. A plot of comput:
ing time against & rises sharply at both ends, terminating very
soon with solution failure at high /. Fortunately, the curveis
usually fairly shallow around the minimum, which helps when
tuning. '

Even a nominally constant step may have to vary occasionally
during the solution to conform with switching times, print
intervals, and perhaps restarts after limiting. It is common te
reduce / for a few steps after a large disturbance.

As regards midterm and long-term stability programs, fev
are yet in production use. In them; the network is solved at
relatively infrequent intervals, which can be ten or more time
the integration step length (4-120 cycles?).

D. Automatic Error Control

In principle, the reliability/accuracy/speed compromise ca
be resolved much better if a program has automatic error con
trol. In practice, the industry has not developed this area of
the stability calculation as much as it might have. The mais
form of error control is steplength changing, to keep (he
local error within limits. The general idea is that when any
of thk variables are changing rapidly, a small value of I 8
needed; but, when they are changing slowly, A can be ir
creased to more computationally econormical values.

Several rule-of-thumb criteria for adjusting A have bea
used, and are based on the following:

1) rate of change of the variables;

2) comparison between extrapolated values and integrated
values of the variables; [t
- 3) number of iterations during a step (especially with im

' plicit Trapezoidal rule) on the theory that the number of
" iterations indicates the rate at which the important var
ables are changing; i3

4) comparison between k, and ki in the Runge-Kutts

method of (3) [17].

Such criteria can be tuned to work quite well, provided tha
not too much sophistication is attempted. It is usually not
profitable to try to adjust h every step, nor to allow hle
deviate too much from some nominal value. :

StepJlength changing causes difficulties with the previow |§ ¢
values in multistep integration methods, unless Nordsieck
versions are used [16], [40]. With extrapolation, nonequiv‘
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dlstant formulas can accomodate the step changes without
F trouble.  Using implicit integration, extra work might be
needed whenever & changes to refactorize the Jacobian or
teevaluate the matrix exponential, depending on the precise
method and its implementation. A more mathematically
sound criterion for step changing is local truncation error,
ilthough in the power-system problem it is not necessarily
the predominant error generated over a step. The ease and
¢ accuracy with which the truncation error can be estimated
varies from method to method. The estimation can be em-
- bedded in Runge-Kutta formulas at a little extra cost per
- step. In the predictor-corrector methods, it can be obtained

from the difference between the predicted and corrected val-
C yes. With many common multistep formulas, the *“polyno-
* mial” method can be used [2] as follows. The dominant
p y(p),
* where & is a known constant particular to the formula, and
- y(P) is the pth derivative of the variable y. If we want to test

i

¢ the truncation error at the end of an integration step, a pth-

' order polynomial is fitted through the p + 1 points comprising
the beginning and end of the step plus p - 1 stored previous
: values. Differentiating this polynomial p times gives y(”) and,
hence, the truncation error.
A very general method for truncation error estimation is
step doubling. Two normal steps of length )i are taken, at
"the end of which any variable is say y. Then the integration
'Is repeated using a single step of double length 2k, giving a
¥ new value yp. If the order of the dominant error term is
‘ known to be p, then the truncation error over a single-length
b step is estimated to be (yp - yn)/(27 - 2). Compared with
no error estimation, this scheme costs an extra step in two.
However, in practice, the error is not estimated after every
pair of steps, and any iterative solutions in the 2h-step are
gided by good starting values already available from the
normal-step integration.
Where usable, the polynomial method is more efficient than
he step-doubling ncthod. The former relies on previous val-
i ues, and, in fact, more of them than are required by the multi-
i " step formula itself. -In the specific case of the Trapezoidal rule,
 fhe required two previous values are in any case likely to be
vailable if quadratic extrapolation is used to provide geod
{!tartmg values for the iterative solution.
! Explicit integration methods have a much stronger need for
error control than do implicit methods, which can tolerate and
" even recover from temporary periods of high-error generation
uring the course of a solution. However, automatic step-
ength adjustment seems to have been used very little in tra-
dltlonal programs. Instead, the emphasis has been-on protect-
mg the process from fast components prior to the solution,
1 3s described in Section IX-A. '
Truncation error control has been used in several implicit
integration applications. Reference [20] reported that & can
vary between one and 40 cycles (the latter obviously when the
power system is substantially returning to the steady state),
using the Gear formulas in the Nordsieck mode. Reference
1[41] used a similar approach, but ran into trouble trying to
maintain a reasonable level of accuracy for all variables at all
times. At certain stages of the solution, particularly after large
disturbances, fast nonquiescent variables in the excitation con-
trol and elsewhere will not solve within the given truncation-
¢tror tolerance withiout uneconomicalily small values of h. In

i

forder to avoid excessive solution costs, it is necessary to pro-
bit # from shrinking to very low values, and, therefore, to
ffer the attendant errors for limited periods.

Usually, this
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makes remarkably little difference to the computed system
response. Reference [2] performed some very instructive
tests, comparing the cost effectiveness of solutions with and
without automatic steplength control. In well-behaved stable
system responses, it was found that a constant-h approach can
maintain the local truncation error more or less within the re-
quired range throughout the solution. In such cases, the over-
heads of automatic control would not be worthwhile. However,
in one marginally stable test problem, there was considerable
variation in the value of h needed at different stages of the
solution to keep the truncation error within bounds.

With automatic step-length control, the computing time for
a study on a given power system is very much a function of
the severity of the disturbance to the system. Well-implemented
control of 7 should give more reliable solutions, and, while
little computational saving over fixed-step methods is expected
during perhaps the first second of a stable response when there
is rapid movement and limiting is active, step expansion as the
system damps down could give significant savings.

In longer term simulation programs, there is the double prob-
lem of controlling the integration step length and the fre-
quency with which the network is solved. Reference [25] ap-
plies automatic control for the latter only, based on comparing
the extrapolated and calculated values of P,.

E. Arithmetic Precision

Any discussion on solution accuracy should not ignore the
question of arithmetic precision. An adequate computer word
length for floating-point variables is the important first pre-
requisite in the whole calculation process. There is some scope
for optimization in terms of storage and perhaps in speed. The
main solution variables can be stored with high precision,
while basic data (of which there is a, lot) may not need this.
Care must be taken to find out exactly what the computer
does with mixéd-precision arithmetic statements.

In gencral, a mixed-precision scheme should only be under-
taken with considerable caution. The following remarks, as-
suming that a uniform word length is used, are based on the
author’s experiences in implementing short-term stability pro-
grams with implicit integration and a factored-Y ¢ network
solution. For large problems, 32-bit words proved to be quite
inadequate. The accumulation of error contaminates the solu-

tion significantly. This contrasts with other calculations such

as load (ﬂow, where 32 bits are just sufficient, although high-
accuracy convergence (nor normally needed) is often not pos-
sible. 36-bit words were dangerously marginal, while 48 bits
were reliable. Thus, for example, there is no problem on CDC
60-bit machines, and IBM 360/70 series (32 bits), UNIVAC
1100 series (36 bits) and 24-bit machines working in double
precision. Machines based on 16-bit words, mostly minis,
must and usually do have a triple-precision facility. However,
extended precision often slows the computation down sig-
nificantly (not IBM). The above factors must also be taken
into account when contemplating the use of tlie emerging gen-
eration of powerful microprocessors.

X. DiscussiOoN

A. General

This section attempts to translate the information and ideas
thus far presented into a view of the state of the art. The di-
rect evidence on which to base such a view is not too great. In
this subject, it is much more difficult to draw general con-
clusions about methods from the results of small-scale algo-
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rithmic testing than it is in, say, load-flow analysis. The: de-
velopment of a stability program requires that extensive effort
(and cost) be devoted to modeling detail, realistic testing, and
algorithmic tuning. Probably there are no two stability pro-
grams in industrial use that employ the same numerical meth-
ods, especially the smaller details that can affect performance
dramatically —extrapolation being an obvious example. There
has been little circulation of standard test data to use on dif-
ferent programs, nor any clear basis for evaluating their con-
stituent methods (hence, the comparative study reported in
Reference [2]). Naturally, also, the type of power system and
its modeling will affect the comparisons between methods.

The following comments are based on the author’s critical
interpretation of the literature, and on his own experience in
the field.

B. -Numerical Stability of Integration Methods

In the power-system application, most highly stable (implicit)
integration methods cost little or no more computation per
step than their explicit counterparts. However, when not
limited by solution roughness they permit larger step lengths,
and this performance difference increases as the problem be-
comes more stiff. A number of separate studies have con-
cluded that on typical modern system models, a program
using an implicit method will on average be several times
faster than a comparable program using an equivalent explicit
method. .

An industrial stability program is an evolutionary tool, which

must accept new modeling features as apparatus changes. New
devices tend to have more and more rapid responses. Examples
are: excitation controls including power-system stabilizers,
electronic-turbine governors with fast valving, controlled
static compensation, and hvdc links [46]. The traditional
nonstiff model is becoming a thing of the past. With an
[implicit mcthod, protecting the program against fast com-
ponents, and tuning, are much less critical. Obviously, in-
discriminately detailed modeling is not to be encouraged,
but it is apparent that to base a program on explicit integra-
‘tion forces severer compromises between accuracy of model-
ing and computing efficiency.
"An implicit method has one drawback—the program struc-
ture is more complicated because the algebraized differential
equations of each machine must be solved simultaneously (see
Section VI-H, however). Where a power utility uses its own
program routinely in studies on its own and adjoining systems,
this disadvantage is not too great. Whenever a new device is to
be studied, it can be added as a new modeling option in the
program. On the other hand, some programs that are used as
general design tools have very flexible element-by-element
model-building facilities in the data input. In these cases,
there will be a significant increase in the organizational work
in the program to connect the components together for
Simultaneous solution.

C. Choice of Integration Method

Restricting attention at this stage to the implicit methods,
the Trapezoidal rule seems to be the clearest choice, as con-
cluded also in [2]. It is numerically stable, but does not
threaten to produce falsely stable system responses in the
presence of fast nonguiescent components, as do most other
methods, and it is self-starting. These qualities are of par-
ticular importance during the rapid electrical response of the

power system after a large discontinuity, when there is typi-_
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cally a lot of excitation-control limiting activity. They can
also remain important throughout the solution in the case of
marginally stable or unstable systems.

It seems logical to provide automatic step length control
during the solution. A well-designed control mechanism is
needed, avoiding very frequent and wide changes in h. Trun-
cation error is the safest control criterion to use, but imple-
mentationally simpler more heuristic criteria might work
equally well in practice. The theory and techniques in this

area are still rather weak, and the onus for devising a good }

mechanism falls largely on the developer of each individual
program.

A clever solution control scheme might be able to distinguish
when fast components and limiting activity have subsided
enough to justify switching from the Trapezoidal rule to higher
order multistep formulas. The only difference in implementa-
tion is the need for previous values. Usually two of these will
anyway be available, since they will be used in the Trapezoidal
rule itself to provide good iteration starting values by extrapo-
lation (the extrapolation method can be adapted to use y in-
stead of y if necessary). The advantages of higher order Gear
formulas will be seen after the first couple of seconds, say, in
a stable system response, by permitting step length expansion,

D. Network Solution Mcthods

This topic is the easiest to comment upon. The factored-Y*¢
approach may be considered in the absence of nonimpedance
loads or if storage is critical. Otherwise, Newton’s method
with periodic Jacobian matrix refactorization should be used
from the viewpoints of reliability of convergence and of over-
all speed. It may not be convenient for all quantities to in-
clude their partial derivatives within the Jacobian matrix, in
the strict Newton manner. This applies to/spécial devices with
complicated equations. Provided that the power system is not
very sensitive to the state of thc device, in an incremental
sensc, these special equations can be iterated in an outer loop
without much loss of computational performance.

E. Partitioned versus Simultaneous In iérfaciné Approaches

The choice between these approaches applies mainly to the
implicit multistep methods, including Trapezoidal. As ex-
plained in Section VIII-D, the Simultaneous approach would
be attractive only if it has superior convergence to the Par
titioned schelme. At present, there is no data to establish
this superiority. The block-successive Partitioned solution
is organizationally and algorithmically more flexible. This
flexibility may be exploited in various ways, such as in con-
necting model blocks together, enforcing limits, or even
solving some of the differential equations with different
step lengths (see Section VI-H). Comparison studies ar
needed to evaluate some of these options.

F. Future Algorithmic Developments

At the time of writing, there are no signs of impending ,1

algorithmic breakthroughs for the power-system time-domait
dynamic simulation. Broadly speaking, the more modem
solution processes seem to be utilizing existing knowledg
in the numerical methods field practically and effectively,
albeit at times a little crudely. In the absence of major ad-
vances in the general numerical area, or some revolutionizing

transform for the power-system equations, further develop § "
I microprocesso

ments will probably consist mostly of refinements to existing
algorithms, especially in the automatic solution control fez
tures (see the next section, however).

i

cased

STOTT: POW

The more
creased com
problems to
by factors «
some of the
creates some
it should be
fast control
stability.

G. Future ¢

If algorith
hold great p
the computa
most is the
multiple prc
using distribu
sors. Curren:
processors, w
There are re
stability calc
twenty times

The distrib
area, althoug
is not yet cl
study, since
Assuming th:
bility caleula
ing a few doll
and algebraic
During an in
chines in par:
normal serial
be performe
single (larger
and limits th
machine equ:
on tearing th
in parallel on
solution of Iz
tearing than
for roundoff
can be decrea

“ sors is negligit

put of stabili
portance in re
several differ
including spa:
Is to make «
since much o
handle the eq
Thus in_ this ¢
being raised as
One possiblc
work is that

' cated and tin
. software, and

and uneconor
computing tac
tlon. A con
studies might

major cost be
througl




R’y 1976MRIOTT: POWER-SYSTEM DYNAMIC RESPONSE CALCULATIONS
hey ca he more extensive use of dynamic equivalents promises in-
S casé o sed computational economy. By reducing the sizes of the
i blems to be solved, overall computing times can be reduced
| contr‘h ly factors of several times [47). Equivalencing eliminates
anism q e of the response modes of the original model, and usually
.. Tru ates some degree of shift in the remaining ones. Therefore,
it impl i should be applied with care, especially in the presence of
ht wor t control apparatus that has a significant effect on system
s in th[ 5 ‘ blll[y.
idzvig:::f ' Future Computational Developments
g algorithmic development as mentioned above does not
stinguish} ld great promise for much faster and cheaper simulations,
subsided 3 computational area is considerably more hopeful. Fore-
to higher} Bost is the parallel computation field, either through using
lement § ltiple processing in large general purpose computers or
hese wilt! ng distributed processing via many cheap fast microproces-
pezoid % s. Currently, the front runner appears to be the use of array

ocessors, which can be attached to ordinary large computers.
here are reports of experiments in which the power-system
bility calculation has been speeded up by an impressive
fwenty times.
BiThe distributcd use of microprocessors is also an intriguing
s, although its ultimate compatibility with array processing
| not yet clear. It offers great potential savings in cost per
udy, since the main hardware should be very inexpensive.
suming that the existing numerical approaches to the sta-
fity calculation are to be used, an individual processor (cost-
bg a few dollars?) is assigned to the solution of the differential
Ihd algebraic equations of each machine or machine group.
furing an integration step, it is now possible to solve all ma-
nes in parallel, in negligible lapsed time compared with the
rmal serial approach. After this, a network iteration has to
performed. Solving the network in the usual way on a
Hingle (larger) microprocessor does not exploit parallelism,
\ limits the overall time saving to that achieved for the
chme equations. Therefore, effort is being concentrated
$n tearing the network into smaller parts that can be solved
parallel on separate processors [48]-[50]. Generally, the
ution of large sparse networks takes more operations with
ring than without, but this is not so important (other than
roundoff accumulation) if the absolute computing time
be decreased significantly. Where the cost of extra proces-
Wrs is negligible, the main challenge is to maximize the through-
t of stability cases per unit time—this is of particular im-
rance in real-time dynamic security assessment. There are
Breral different ways of approaching the network tearing,
Wcluding sparse diakoptics [51]-[53]. The biggest problem
:lo make optimal automatic sectioning of the network,
cec much of the existing tearing theory tells only how to
dle the equations after the torn sections have been chosen.
us in this and other respects, new algorithmic aspects are
graised as a result of parallel computation.
One possible eventual outcome of the distributed processing
BMork is that the general-purpose computer with its compli-
i ted and time-consuming operating systems, vast support
ﬂware and high built-in versatility will become unnecessary
Ml uneconomical for the routine performance of specific
putmg tasks such as the power-system stability calcula-
B8, © A company that is heavily committed to stability
5 dles might ke able to maintain a special-purpose multi-
oprocessor configuration solely for these studies, the
or cost being in the software. Implementation will be
jed through standard hardware and operating-software

extrapod
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der Ges
s, say,
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‘ments in the stability calculation is greater than ever, it seems
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modular architectures. The main problems will relate to the
sharing of central data bases and peripherals.

With the availability of sufficient core storage, the stability
calculation is also a natural application for code generation.
This involves the generation by software of an object code for
the execution of the program on each specific power-system
problem, eliminating indirect addressing and other overheads.
In conventional runs, these overheads are wastefully repeated
during a calculation, every iteration and every integration
step. The computational saving, estimated at no less than
50 percent, could justify the preparation of a code generation
routine for a company that performs many large stability runs
on a given computer.

Finally, it is evident that in many cases, significant economies
can be made by giving greater attention to the time-consuming
input—output aspects of stability programs.

In the face of the above developments, it secms unlikely thai
today’s concepts of hybrid computation will survive very long.

Xl. CONCLUSIONS

This paper has attempted to provide a general picture of
how the conventional power-system dynamic responsc cal-
culation is carried out. The subjcct is large and complex, and
it is not easy for one paper to do justice to the whole area.
For instance, the algorithmic variants needed to handle special
models with slightly different structures have not been covered.
It is hoped that the solution methodologies and techniques
described here will serve as a guide to the appropriate schemes
in such cases.

In the spirit of a critical review, the paper has recommended
certain specific methods as being very suitable for large-scale
short-term simulations using conventional models. Briefly, an
excellent general scheme seems to be the implicit Trapezoidal
rule, interfaced in the Partitioned manner with a Newton net-
work solution. Extrapolation (prediction) techniques are es-
sential, and automatic accuracy control is very desirable. The
possibility of switching to higher order implicit multistep .
formulas should not be ignored. There is still scope for the
refmement of a number of algorithmic aspects.

Although the technical and economic need for improve-

that there is little real development in the conventional algo-
rithmic sense. The state of the art as indicated in the paper
has pot changed essentially for some years. Even so, the
inertia against writing new even more complicated software
is such that many industrial programs throughout the world
are still using outdated methods and suffering excessive com-
puting time and/or study restrictions as a consequence.

Most of the development potential appears to lie, not in the
conventional algorithmic sphere, but in the computation it-
self, much of which is hardware-related. Parallel computation,
in various different forms, is destined to reduce solution times
and costs considerably, but is generating new calculation prob-
lems of both program-organization and algorithmic natures.
The most spectacular improvements will be achieved if the
various methods can be used in combination with each other.

This paper has dealt only with the response calculation pro- ,
cess itself, and not the many related issues. One of the biggest
single potentials for computational economy will always be in : E;
the engineering choice of study cases and the interpretation of
results. A thorough rationalization of modeling practices 2
versus simulation accuracy, and how they affect computing
effort with the modern calculation methods, would be ex- F
The in-

tremely helpful. . These are still very intuitive areas.
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dustry has been and still is looking hard at ways of avoiding
or mitigating the need for large-scale brute-force simulations,
through approaches such as dynamic equivalencing and reduc-
tion, pattern recognition, hybrid computation, and Liapunov.

Fast, reliable, and inexpensive stability diagnoses are needed
in critical phases of power-system planning, operation, and
now real-time security monitoring and control. The volume of
the calculation process continues to offer a great challenge to
analytical and computational specialists from the power in-
dustry and other disciplines.

XII. AvpeNDIX-TyPriCAL SIMPLE MACHINE MODEL

This Appendix illustrates the types of equations that are
being treated throughout the review by showing a simple but
commonly used machine model.

A. Differential Equations

Referring to Fig. 1, the rotor dynamic equations are
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W= (P =~ P - D)/ (AD

where D is 2 damping factor and H is the inertia.
The rotor electrical equations for a model with transient
effects only are:

Eq=~(Eq - (Xa- X&) lsa = EP)ITao (AD
Ehy=~(By+(Xq - X)) Is)Tgo (A4

where the X’s are synchronous and transient reactances, and
the T’s are open-circuit time constants.

In (A.2), P, is the mechanical power output of the turbine
governor system, which is represented by a (usually) linear se!
ot differential equations with at least one limiter. Similarly.
Ey in (A.3) is the {ield voltage output of the excitation-contrdl
system, which again is represented by a set of differential cqu
tions. These equations are linear, except perhaps for satun
tion in onc or two circuits, The time constants in the cxcit
tion control may be relatively low, and at least one circuit hy
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_{!' POWER-SYSTEM DYNAMIC RESPONSE CALCULATIONS
i

lere we shall introduce the simplest possible turbine and
itation control models, merely to demonstrate the equa-
i jn forms. Combining these equations with (A.1)-(A 4) gives
; S) which corresponds exactly to (la).
gains, and subscripts e, s, ¢ and g refer to the exciter,
itation-control stabilizer, turbine, and governor transfer-
"f ction blocks, respectively. The governor speed reference
and the power set point P, have been added to vector u to
e compatibility with the form of (1a). These quantities are
stant, however, and thus have not received special atten-

In (A.5) the K'’s

the machine rotor d, g reference frame, the stator voltage-

(A.6)

z} transniission network is described in the complex (real
“synchronously rotating” reference frame.
iorder to solve the complete system, each stator equation
{ be transformed into the network frame.
ation is simply a rotation of (A.6) through the rotor
igle §. This difference in coordinate systems arises because
machine saliency (dependence on rotor position § bf mag-
fo "circuit reluctant and hence machine impedance) for
Wbich .the d, q axis approach provides an elegant analytical

This trans-

e transformation can be expressed symbolically in either

(A7)

R ‘X(’; T Isre‘
Xéi Rs Isim
I
= 2. 70 (A8)
Isim
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As defined by (A.8), Z; is the stator impedance viewed from
the synchronously rotating network frame.

After thesc preliminaries, we can now consider the computa-
tion of the variables u in (1a) or (A.5), as functions of the ma-
chine terminal voltage V = Vo +/Vj,, and of the variables /'y,
E and §, which comprise the subset E of y. An expression
for the stator d, q currents is obtained by transforming V,; and
Vq into the network frame, and solving (A.6). Thus

Isq o | Ea ) V,
’ z3. - zZgh T 1 (A9

!

]sq Eq Vim

[t}

Here, matrix T is a function of 8. The air gap power is now
given by:

Py =k, 'de"'li‘(ll sq (A.10)

where /gy and /g, are given by (A.9). The terminal voltage
magnitude error is simply

AlV|=v, - (VL + Vi)' (A1)

where V, is the voltage regulator sctting. Equations (A.9)-
(A.11) now correspond to (2b).

C. Calculation of Initial Conditions

The initinl network operating state for a stability study is ob-
tained by a load-flow solution. H is now nccessary to calcu-
late the initial steady-state operating point for each machine.
Where there are parallel units at a bus, the power output of
each machine or, especially in the case of reactive power the
proportion of the total bus power supphed by each machine,
must be specified. .

Knowing the terminal voltage and complex power of a ma-
chine, the complex stator current is also known. At this
point, the general method would be to solve simultaneously
the nonlinear algebraic set comprising the differential equa-
tions, with their left-hand sides set to zero, plus a version of
(A.8) with the E' terms transformed into the d, q frame.
However, a much easier approach is used. From the machine
analysis on which the equations were based, and in a nonob-
vious form from the equations themselves, the phasor V +
(Rg +jX,)I; lies on the q axis. Hence, it is easy to find the

rotor ingle § between the real axis in the network frame and"

the machine ¢ axis. With this, I; and V can be transformed
into their d, ¢ components. Eé is given directly from (A 4)
and E", is found from (A.6). The steady-state value of £, now
follows immediately from (A.3).

Saturation as usual introduces complications. The machine
reactances are functions of the operating point. The easiest
way of handling this is to start assuming no saturation, and
then repeat the above initialization process iteratively, succes-
sively updating the reactances from the machine'’s open-

circuit saturation curve until converged. Whether or not

saturation subsequently has an appreciable effect on the
machine’s response, apparently it is important to represent
it in the initial-condition calculation. This is because it af-
fects the initial value of E, and, hence, the distance that E
has to travel before it hits the excitation ceiling.

After this stage in the initialization, it is relatively easy to
calculate the remaining variables. All the machine state var-
iables are of course zero. P, comes from (A.10), and is equal
to P,,. It may possibly be necessary to perform an iterative
initialization in the excitation control block because of satura-
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tion,

but this can be avoided if the saturation characteristic

is approximated simply enough.
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