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Abstract ds

— = w,-w tel,...,m (1)

This paper presents the relationship between a at 1s '
detailed power system dynamic model and a standard load- do

i

flow model. The linearized dynamic model is examined M, — =T, —-[E' . -X%, I .11 ~[E*. +X' I ]I
to show how the load-flow Jacobian appears in the system ide MiTtqiT diTdiT Tl TTdi TalTaiTrdl
dynamic state Jacobian for evaluating steady-state sta- —D.(mi—m ) i=1,...,M (2)
bility. Two special cases are given for the situation 1 s
when singularity of the load-flow Jacobian implies dE'i
i 1 i ian. = - - -X* =1y000
singularity of the system dynamic state Jacobian Tc'ioi —S_dt E'qi (xdi Xdi)ldiﬂat‘di i=1, ,m (3)
Keywords
dEgy
Steady-state stability, load-flow Jacobian, power Tt O R e (X XTI i=1,...,00 W)
system dynamies. qoi dt di "ql “ai’Tal
1. Introduction dEfdi
T = =(K., +S_. (E NE, . +V i=1,...,m (5)
The subjects of voltage collapse and voltage instab- Ef dt Ei CEiTfdi’7fdi Ri
ility have created a renewed interest in load-flow
Jacoblan singularities and their relationship to steady- dvR KAiKFi
state stability [1-10]. While load-flow has been the TAi _‘Ti - —VR1+KA1RI“1_ - Ef‘diﬂ(Ai(vrefi_vi)
primary method used to compute steady-state conditions, Fi
its role in evaluating stability has not been fully i=1,...,0 (6)
clarified. In 1975, V. A. Venikov et al published a
paper which proposed that under certain conditions, dei KFi
there is a direct relationship between the singularity T, —— =R .+ = E. .. i=1,...,m 7
Fi dt fi T fdi ' ’
of the standard load-flow Jacobian and the singularity Fi
of the system dynamic state Jacobian [11]. This paper
has been cited as the primary justification for studying dT Toos T
tne load-flow Jacobian matrix to determine critical T Mo -7  +(1=- _KH—;LE)PCHf K_H;_i_ﬂ-[_i PSV'
load levels. In this paper, we clarify this result in RHI  dt Mi CHi CHi 1

the context of a fairly general dynamic model and show
that the result should be considered optimistic for any i=1,...,m (8)
type of steady-state stability analysis. The paper

includes a tutorial on the role of load-flow in dynamic dPCH‘
analysis. 1 - = .

y Togi —at Pemi *Pavi i=1,...,m (9
2. A Detailed Dynamic Model Without Stator/Network

Transients dpP w

_— SvVi 1 i

T = =P +P.,. = =— (=) i=1,...,m (10)
This section presents a basic nonlinear multi- svi de svi Ci Ri g ’ ’

machine dynamic model which includes the fundamental

features of voltage and frequency control, but assumes

that all stator/network transients have been eliminated. 0 = v,ejei +(R_,+JX1.)(T . +JT _.)e
It has been shown that for pure R-L networks and loads, B sio7di’"dl "l
these transients are very fast compared to the slower

mechanical or voltage type dynamics, and as such can be -[E!, +(X!
formally eliminated using singular perturbation and the di q
concept of integral manifolds [12-14]. The elimination

of the stator/network transients leads to algebraic 0 = -P,-jQ,+V ejei(]: -31 )e’j(‘si—"/Z)
equations which accompany the multimachine dynamic model i i ai ai

j(Gi-'n/Z)

J(Bi—w/z) f=1

1~Xéi)lqi+jE&i]e S 1)

as follows: i=
+PL1(V1)+JQL1(V1) i=1,...,m (12)
0 = -Pi-jQi+PLi(Vi)+jQLi(Vi) i=m+1,...,n  (13)

n

0= -P-jq+ I vivkxikej(ei 0 %k) 1=1,...,n (1)
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The notation for an m-machine, n-bns system is,

VieJei = voltage at bus i i=1,...,n  (15)
je, _ 3(6,-1/2) .

Vie i (Vdi+Jti)e i i=1,...,m (16)
3, . j(s,-n/2) -

IGie i= (Idi+31qi)e i i=1,...,m (17)

!ikejaik = standard load-flow bus admittance matrix
entry
i,k=1,...,n (18)
Pi+jQi = net injected power into bus i from a path
not included in the bus admittance matrix

i=1,...,n  (19)

The algebraic variables Pi and Qi are introduced so that

the standard load-flow equations (14) are preserved for
any dynamic load model (12) and (13). As written, this
full dynamic model contains 10m dynamic states (S,m,Ea,
1
EaBrarVroRe s TysPonoPsy
states (Id,Iq,P,Q,e,V), and 2m inputs (vref’PC)‘ Equa-
tion (11) is the stator algebraic equation which is
normally expressed as a phasor diagram in the litera-

) and 2m + Un real algebraic

ture. We prefer the circuit form shown in Figure 1.
(Id’.,JIql).J(ci-I/z)
Jxél Re1 \\i
[‘&1*(x&1'x31’1q1
.;JB:u]eJ(Gl'T\’/Z) v edei

Figure 1 - Synchronous machine dynamic circuit

Note that PLi(vi) and QLi(Vi) are assumed to be

given functions which describe the loads at all n buses
as a function of their respective voltages. This
representation allows most common load models including
constant impedance. There are m+2n complex algebraic
equations which should in principle be solved for the
2m+in real algebraic states as functions of the 10m
dynamic states. The machine currents Id’ I can easily

(11) and substituting into
(2)-(12). The P and Q algebraic states can easily be
eliminated by substituting (12) and (13) into (14),
leaving only n complex algebraic equations (14) to be
solved for the 2n real algebraic states 6 and V. These
remaining algebraic equations cannot normally be solved
explicitly. In the special case of constant impedance
loads, it is customary to use an internal generator bus
model and include all loads and the machine impedance
Rs4jXé in the bus admittance matrix (enlarged to m+n
With the additional assumption of Xa = Xé, all
algebraic states can be explicitly eliminated with a
reduced (mxm) admittance matrix. For nonlinear load
models, the algebraic equations must be retained. This
paper does not introduce internal machine buses.

be eliminated by solving

buses).

T
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3. Standard Load-Flow

Standard load-flow has been the traditional mecha-
nism for computing a proposed steady-state operating
point. For this paper, we define standard load-flow as
the following algorithm [16-18]:

(a) Specify bus voltage magnitudes numbered 1 to m.

(b) Specify bus voltage angle number 1 (slack bus).

{e¢) Specify net injected real power Pi at buses num-
bered 2 to m.

:d) Specify load powers P

and QLi at all buses num-
bered 1 to n.

Li

Solve the following equations ((13) and (14) rewritten)
for 6 6,V v

n

0 = —Pi+ k§1 Vikaikcos(ei_ek_aik) i;ivéﬁééZ) (20)
n

R AN L
n

P e gt

where Pi(1=2,,..,m), Vi(i=1,...,m), PLi(i=m+1,...,n),

QLi(i=m+1,...,n), and 6, are specified numbers. The

1
standard load-flow Jacobian matrix is the linearization
of (20)-(22) with respect to 92,...,en, Vm+1""’vn'
After this solution, compute

n : _ -
P+JQ = IV VY ol (8478 oy )

k™ 1k (23)

: VinYiksin(ei—ek—aik) i=2,...,m (24)

O
[ l-=1

This standard load-flow has many variations including
the addition of other devices such as tap changing
under load (TCUL) transformers, switching var sources
and HVDC converters. It can also include inequality
constraints on quantities such as Qi’ and be revised to

distribute the slack power between all generators.

We would like to make one important point about
load-flow. Load-flow is normally used to evaluate
operation at a specific load level (specified by a
given set of powers). For a specified load and genera-
tion schedule, the solution is independent of the
actual load model. That is, it is certainly possible
to evaluate the voltage at a constant impedance load
for a specific case where that impedance load consumes
a specific amount of power. Thus the use of "constant
power" in load-flow analysis does not require or even
imply that the load is truly a constant power device.
It merely gives the voltage at the buses when the loads
(any type) consume a specific amount of power. The
load characteristic is important when the analyst wants
to study the system in response to a change such as
contingency analysis or dynamic analysis. For these

purposes, standard 1load-flow wusually provides the
"initial conditions."
4, Initial Conditions for Dynamic Analysis

For any dynamic analysis using (1)-(14), it is
necessary to compute the initial values of all dynamic
states and to specify the fixed inputs (Vref and PC)'
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In power system dynamic analysis, the fixed inputs and
initial conditions are normally found from a base case
load-flow solution. That is, the values of Vref are

computed such that the m generator voltages are as spe-
cified in the load-flow. The values of PC are computed

such that the m generator real power outputs are as
specified and computed in the load-flow for rated speed
\ws). To see how this is done, we assume that a load—

flow solution (as defined in section 3) has been found.
The first step in computing initial conditions is nor-
mally the calculation of generator currents from (12)
and (17) as,

JyY . ila - -36,
1€ & =(Py=P (Vi )=3(Q; Q; (V))/ (Ve "7 )

i=1,...,m (25)
and machine relative rotor angles from manipulation of
{11) and the algebraic equation from (4),

SAFE

- Je, :
61 = angle of (Vie i +(Rsi+qui)IGie
.

(26)

i=1,...,m

With these quantities, the remaining dynamic and alge-
braic states can be found by,

G (ymHm/2)

Idi+JIqi =I5 i=1,...,m (27)
X 38, -8 +1/2) .

Vdi+qui = Vel i=t,...,m (28)

followed by Efd from (3), (4), (11) and (16)

Bogi = xdildi-»vqimsilq1 i=1,...,m (29)

With this field voltage, Rfi’ VRi and vrefi can be found
from (5)-(7) as,

K
Fi
Rey = 7 Bpgy i=1,...,m  (30)
Fi
oy = (g *5g; Bpyi ) Bpay i=1,...,m (31)
Vioeri = vi+(vRi/KAi) i=1,...,m (32)

The initial values of E&i and E'. are then found from

di
(3) and (W),

X

"

-(X RO (33)

(38

-y i=
ai %41 i=1,...,m
= (X . -X'.)I .
ql q1° ql
Note that if the machine saturation is included, this

calculation for E'i and Eéi may be iterative. The

mechanical states and PCi are found from (1), (2) and
(8)-(10) as,

*
Eqi di “fdi

Eéi i=1,...,m

W= Wy i=1,...,m (35)
TMi = (Eai-XéiIdi)Iqi+(Eéi+Xéini)Idi i=1,...,m (36}
Poni = Tus i=1,...,m  (37)
PSVi = PCHi i=1,...,m (38)
Poy = Poyi (1/R) i=1,...,m (39)
This completes the computation of all dynamic state

initial conditions and fixed inputs.

For a given disturbance, the inputs remain fixed
throughout the simulation. If the disturbance occurs
in the algebraic equations, the algebraic states must
change instantaneously to satisfy the initial condition
of the dynamic states and the new algebraic equations.
Thus it may be necessary to re-solve the algebraic
equations with the dynamic states specified at their
initial conditions to determine the new initial values
of the algebraic states.

From the above description it is clear that once a
standard load-flow solution is found, the remaining
dynamic states and inputs can be found in a straight-
forward way. The machine relative angles 61 can always
be found provided,

Y+ 0o (40)

6, s c
Viej i +(Rsi+3X i=1,...,0

qi’Tai®

If control limits are enforced, a solution satisfying
these limits may not exist. In this case, the state
which is limited would need to be fixed at its limiting
value and a corresponding new steady-state solution
would have to be found. This would require a new load-
flow specifying either different values of generator
voltages, different generator real powers, or possibly
specifying generator reactive power injections, thus
allowing generator voltage to be a part of the load-
flow solution. In fact, the use of reactive power
limits in load-flow can usually be traced back to an
attempt to consider excitation system limits or genera-
tor capability limits.

5. Angle Reference

In any rotational system, the reference for angles
is arbitrary. Examination of (1)-(14) clearly shows
that the order of this dynamic system can be reduced
from 10m to 10m-1 by introducing the new relative angles
(arbitrarily selecting 61 as reference)

! = - i=
ﬁi Gi 61 i=1,...,m (41)
0} = 8,78, i=1,...,n  (42)

The full system remains exactly the same as (M-
with each <'s.l replaced by 6;, each Si replaced by ei and
g replaced by W, in (1).

61 still changes from its initial condition (as found

in the last section) as o, changes, so that each origi-

During a transient, the angle

nal 6i and Bi can be easily recovered if needed. The
angle 6; remains at zero for all time. Thus for dyn-
amic simulation, the differential equation for 61 is

normally replaced by the algebraic equation which simply

states 6; = 0. Notice that 61 is normally arbitrarily

selected as zero for the load flow analysis. This means
that the initial value of 61 is normally not zero.
During a transient, e; and 91 change as all angles

except 6; change. If the inertia of machine 1 is set

to infinity, w, and 61 remain constant for all time.

1
5. Steady-State Stability

The steady-state stability of multimachine systems
is usually evaluated by computing the eigenvalues of
the system dynamic state Jacobian matrix which is the
linearized version of (1)-(14) with all algebraic equa-
tions eliminated. This dynamic model has one zero
eigenvalue corresponding to the angle reference discuss-

ed above. Elimination of 51 through the use of (U41)

and (42) would eliminate this zero eigenvalue. The



system is linearized around a steady-state operating
point found using standard load-flow. The Jacobian
matrix for this standard load-flow appears as a sub-
matrix in the lower right block and is denoted as JLF
below:

dAy F
ot A B Ay
0 = D, D, Az (43)
_ c
0 D21 JLF Av
where v

contains the load flow variables 62, 63,...,8
Vm+1""’vn‘
dynamic system, the algebraic equations must be elimi-
nated. This requires the nonsingularity of the algebraic
equation Jacobian (JAE),

n’
In order to evaluate the stability of the

AE i)

The stability of the steady-state equilibrium point 1is
then determined by the system dynamic state Jacobian

(szs),
-1
szs = A-B JAE Cc (45)
Special cases where these three Jacobians szs’ JAE and

JLF can be more explicitly related are given in the

following section.
7. Special Cases

There are two special cases where the standard load
flow Jacobian can be directly related to the system
dynamic state Jaeobian. We do not claim that these are
necessarily realistic cases, only that they lead to
cases where the three Jacobians can be related.

(a) The first special case makes the following assump-
tions:

(a1) Stator resistance of every machine is negli-
gible (Rsi =0, i=1,...,m).

(a2) Transient reactances of every machine are

negligible (X&i =0, X&i =‘O, i=1,...,m).

Field and damper winding time constants for

every machine are infinitely large (Eéi= con-

1=
stant, Edi

(a3)

constant, i=1,...,m).

(al) Constant mechanical torque to the shaft of

each generator (TMi = constant, i=1,...,m).

(a5) Generator number one has infinite inertia.

This together with (a1)-(a3) makes V,| = con-

stant, 6, =

1 constant (infinite bus).

(a6) All loads are constant power (PLi(Vi) = con-

stant, QLi(Vi) = constant, i=1,...,n).

With these assumptions, each Gi is equal to its corre-
sponding ei plus a constant, and each V., is constant.
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Choosing w, as wy and 6, as zero. the dvnamic model for

1 1
this special case (after eliminating Pi and Qi) is,

dei
TS WY i=2,...,m (46)
dmi n
M T TPt k§1 Vi Vit c08(8;=6, may ) D, (w; ~uy)
i=2,...,m (47,
n
0=~ PLi+ k§1 VinYikcos(Bi‘ek-uik)
i=m+1,...,n (48)
n
0= Q; ki1 ViV Yy, ein(8,=6,may))
i=m+1,...,n  (49)
with
Ty; = constant i=1,...,m (50)
V, = constant i=1,...,m (51)
P, = constant i=1,...,n (52)
Q; = constant i=1,...,n  (53)
8, =0 (54)
The linearized form of this model is,
dAeg
A
It 0 I 0 ]
dAwg
e = K1 -D K2 Aw (55)
0 K3 4] Ku ABLVL

vector [AeL AVL]t of incremental
the

where AeLVL is the
load angles and voltages. For this case (a),
algebraic equation Jacobian (J%i? ) is Ku. For nonsin-
gular KM’ the system dynamic state Jacobian for this

case (a) is,

) [0} I
Jé;s - i iy (56)
M (K1—K2Ku K3) -M D
The determinant of J;;; is (see appendix A),
det (K, -K K, 'K.)
det g0 o 1 28 3 yyml (57)
sys detM
The standard load flow Jacobian as previously defined

can be written in terms of these submatrices as,

IF = (58)
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Again for nonsingular KR’ the determinant ot the load

flow Jacobian is (see appendix A):

-1 m-1
det J; o = det K, det (K, -K K, K3)( 1) (59)
For this case, a clear relationship between the deter-
minant of the standard load-flow Jacobian and the det-—
erminant of the system dynamic state Jacobian exists as

det J

(a) _ LF
det szs " det Ku det M (60)

Tnis means that under these assumptions, monitoring the
load-flow Jacobian determinant can detect a possible
dynamic instability. This is discussed in section 8.
The basic structure of this case (a) is used frequently,
but the assumptions (at1)-(a3) are slightly different.
The same structure of (46)-(49) can be obtained by
assuming a constant voltage behind transient reactance
model with the terminal buses eliminated. This leads
to a non standard load-flow Jacobian matrix which
includes machine parameters in the bus admittance
matrix.

(b) A second case where such a relationship can be
firmly established was proposed in principle by
Venikov in [11]. This special case makes the
following assumptions:

(b1) Stator resistance is negligible (Rsi = 0,
i=1,...,m)

(b2) No damper windings or speed damping (Téois 0,
D1 =0, i=1,...,m)

(b3) High gain and fast excitation systéms so that

all generator terminal voltages are constant
(V1 = constant, i=1,...,m)

(b4) Constant mechanical torque to the shaft of

each generator (TMi = constant, i=1,...,m)

(b5) Generator number one has infinite inertia and
negligible reactances. This together with
(b1)-(b3) makes V1 = constant, e1 = constant

(infinite bus)

(b6) All loads are constant power (PLi(vi) = con-
stant, QLi(Vi) = constant, i=1,...,n)

With these assumptions, the special case dynamic model
(after eliminating Pi and Qi) is,

ds,
T - 9y i=2,...,m (61)
dmi
& - TMi_[Eéi*(Xqi—xéi)Idi]lqi
i=2,...,m  (62)
T 3(8,~%/2)
0=Ve 1+jxéi(1di+31qi)e i
_ _ J(8,-n/2)
L0 Xy T, #9827 s
i=2,...,m (63)
n
0=~z vvy 3870 a)
i'k7ik
k=1
3o _ -3(8,~1/2)
* Ve Ty 9T e O +P +IQ
i=2,...,m (64)

n
_ J6,-8 -a, )
0 = k£1 Vivkyike 1 "k Tik +PLi+JQLi
i=m+1,...,n (65
with
Tyy = constant i=1,...,m (66)
V, = constant i=1,...,m (67)
P, ; = constant i=1,...,n  (68)
Q; = constant i=1,...,n  (69)
6, =0 (70)

The m+n-2 complex algebraic equations must be used tc

eliminate the 2m+2n-4 real algebraic variables Eai,

Iji’ Iqi (i=2,...,m), ei (i=2,...,n), Vi (i=m+1,...,n).
We begin by first noting that from (63) and (64),

n
[Eai+(Xqi—X )1 ]Iqi = —PLi+kf cos(ei-e

K %)
(71)

Vikaik

1
di‘“di 1

i=2,...,m
This can be substituted into (62). Secondly, we note

that (63) and (64) can be rewritten (using cos(A+B) =
cosAcosB-sinAsinB and sin(A+B) = sinAcosB+cosAsinB),

xqilqi = -V sin(ei—ai) i=2,...,m  (72)
Eéi—XéiIdi =V cos(8,-8,) i=2,...,m (73)
n
Vil = k£1 vivk!1k sin(éi—ek—aik)+PLi sin(ei—éi)
-y cos(ei—Gi) i=2,...,m  (7h)
n
VIIqi - k§1 ViV Yy cos(8;-6 ~a, )-P °°5(ei"51)
- QL1 sin(ei—éi) i=2,...,m (757
in (72)

i ]
Eliminating Eqi’ Idi' Iqi (simply equating Iqi

and (75)) gives

n
I VVY,

)
k=1 1'k7ik

cos(si-ek—aik

2 -5) =
Vi sin(8,-8,) = X,
)

- xquLi eos(ei—si)—xquLi sin(ei-s
' (76)

i=2,...,m

Using (71), (76) and (65) this special case dynamic
model with Eai' Idl’ Iqi (i=2,...,m) eliminated is,

d8,

FT o, i=2,...,m (77)
dw1 n
M 3T = TPt ki VinYikcos(ei—ek—aik)
i=2,...,m  (78)
0= stin(ei-di)—x Qp;51n(8,-8,)~X P .cos(8, ~§,)
ai™Li 1717 %qi' L1 1%
n

+xqi k51 vivkyikcos(si-ak-aik)i_z,_“’m (79)



n
0=-P .+ kf1 Vv Y, cos(e,-8 -a, )
i=m+1,...,n (80)
n
0=- QLi + k§1 VinYlk sxn(ei-ek-aik)
i=m+1,...,n  (81)
vich
Tyy = constant i=1,...,m (82)
V, = constant i=1,...,m (83)
PLi = constant i=1,...,n (84)
Q ; = constant i=1,...,n (85)
The linearized form of this dynamic model is,
dAs F
_Efg 0 I 0 0 AGg
dAw
M "EEg 0 o | K K, || e
- € (86)
0 K5 0 K6 K7 A8
0 0 0 K3 K,4 ASLVL

For this case (b), the algebralc equation Jacobian

), ,
(JAE ) is,
K K
ERU (87)
K3 Ku

K 0

8-k, KJ , ¢ = > (88)
0 0

for nonsingular Jgg), the system dynamic state Jacobian

for this case (b) is,

(o) ° ' (89)
sys M_1(—B'J§g)—1c') 0
and (see appendix A)
(b)-1
det(-B'J cY) "
det Jggi - e -1 (90)
(b)

Note that the eigenvalues of szs will all be either

pure imaginary or will include one or more which is
positive real. We will consider the dynamic system
case (b) to be stable as long as no eigenvalues are
positive real. By rearranging rows and columns of the
matrix in (86)(see appendix A).

“case (b).
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() _ar p(D)=1 _
det J,o det( B'J,p C') = det K5 det J; o 91)

where JLF is as in (58). This gives the following

relationship between the determinants of the standard
ioad-flow Jacobian, the algebraic equation Jacobian,
and the system dynamic state Jacobian,

det K_det J

() .~ 5 7 "LF_
det szs = o) (92)

det M det JAE

This means that under these assumptions, monitoring the
load-flow Jacobian determinant can detect a possible
dynamic instability. This is discussed in the follow-
ing section.

8. Instability and Maximum Loadability

When studying a proposed load or interchange level,
a load-flow solution is required before steady-state
stability can be analyzed. If a load-flow solution
cannot be found, then it is normally assumed that the
proposed loading exceeded the "maximum power transfer®
capability of the system. This maximum power transfer
point is normally assumed to coincide with a zero
aeterminant for the standard load-flow Jacobian. Using
this as a criteria, any load level which produces a
zero determinant for the standard load-flow Jacobian is
an upper bound and hence an optimistic value of the
maximum loadability. This upper bound has been analyzed
in the past, and is regaining interest as voltage
collapse is associated with this point [1-11,19-21].
1t 1s also important to note that non-convergence of
load-flows is also a matter of solution technique.
Cases have been cited where Gauss-Seidel routines con-
verge when Newton-Raphson routines do not.

If a standard load-flow solution and associated
dynamic system equilibrium point are found (as described
in sections 3 and 4) the stability of the point must be
determined. In order to do this, the algebraic equation
Jacobian must be nonsingular. This matrix is given by
«44) in general, by Ku for case (a) and by (87) for

Assuming these algebraic equation Jacobians
are nonsingular for a given case, steady-state stability
must be evaluated from the eigenvalues of the system
dynamic state Jacobian. This matrix is given by (45)
in general, by (56) for case (a), and by (89) for case
(b). A system is at a critical point when the real part
of one of its eigenvalues is zero. If a real eigenvalue
Is zero then the determinant is zero. In the general
case of (45), the zero eigenvalue due to the angle
reference can easily be removed by using a dynamic model
reduced in order by 1 (see section 5). Clearly many
cases can be found where an equilibrium point can be
critically unstable (at least one eigenvalue has a zero
real part) and the load-flow Jacobian is nonsingular.

In cases (a) and (b), all detailed model dynamic
states have been eliminated by making rather drastic
assumptions. 1In special case (a), as long as det M and
det KH are non zero and bounded, a dynamic equilibrium

point exists and has a system dynamic state Jacobian
which is singular if and only if the load-flow Jacobian
is singular. 1In special case (b), we need to look at
the matrix K_.. Examination of (79) shows that K_ is

5 5
diagonal with the ith diagonal entry equal to:
2
K5y = ~Vi cos(e; 61)+XquLi cos(0,-6,)
n
- X i s YV : -9 -
quLi 51n(9i Gl) Xqi k§1vivk!ik 51n(6i ek aik)
i=2,...,m  (93)
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From (74),
2 .
Koy = - xqivildi-vi cos(e,~6,) i=2,...,m (9%)
and from (73)
Koy = - vi(E(']1 + (xqi—x;u)ldi) i=2,...,m (95)
In steady-state, (4) and (11) give (with Rsi=0)
- Jje j(6,-1/2)
0 = Vie i+ jXqi(Idi+qu1)e i
— _ j(8,-n/2)  _
J[E(‘li + (xqi X1 0Ty le" i=2,...,m (96)

This means that K_, can only be zero (for nonzero Vi)

if (see (17)) 51
je, 3Y ‘o
vieti +quiIGie i+0 i=2,...,m  (97)
This also shows that K is proportional to the magni-

51

tude of the voltage behind Xqi in steady-state. This

was discussed in section 4 as a condition for the
existence of a dynamic equilibrium from a load-flow

solution. Thus, if a dynamic equilibrium point exists
(equation (40) is satisfied), then K_ cannot be singu-
lar. Thus if det M and det ng) are non zero and

bounded, then the system dynamic state Jacobian of case
(b) is singular if and only if the load-flow Jacobian
is singular.

é;; must have all pure imaginary eigen-
values to be stable, det Jé;; must be positive to be

Since J

stable. Reference [11] originally proposed the moni-
toring of the 1load-flow Jacobian determinant during
load-flow iterations to see if it changed sign between
the initial guess and the converged solution. The
implication was that if it did, then the case (b) dyna-
mic model would be unstable at that solution, and if it
did not then the case (b) dynamic model would be stable
(all pure imaginary eigenvalues). Our interpretation
indicates that they did not account for possible values
of det K5 and det Jig).
these would affect stability issues.
det X

A change in sign of either of

We have shown that
would probably never change sign, but whether the

b)

det JAE changes sign or not remains an open question.

9. Conclusions

Standard load-flow is used to find system voltages
for a specified level of loading or interchange (regard-
less of the dynamic load model). It is also the start-
ing point for determining the initial conditions for
dynamic analysis. The standard load-flow Jacobian can
provide information about the existence of a steady-
state equilibrium point for a specified level of loading
or interchange. There are two very special cases when
the determinant of the standard load-flow Jacobian
implies something about the steady-state stability of a
dynamic model. Both of these cases involve very drastic
assumptions about the synchronous machines and their
control systems. The load level which produces a sin-
gular load-flow Jacobian should be considered an opti-
mistic upper bound on maximum loadability. The actual
upper bound would be either the same or lower since it
requires both the existence of a solution and stable
dynamics. -

For voltage collapse and roltage instability ana-
lysis, any conclusions based on the singularity of the
astandard load-flow Jacobian would apply only to the
phenomena of voltage behavior near maximum power trans-
fer. Such analysis would not detect any voltage insta-
bilities associated with synchronous machine character-
jstics or their controls.
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APPENDIX A

The following facts of determinants can be found
in most linear algebra texts.

1. If a square matrix J is block upper triangular

then the determinant of J is equal to the product
of determinants of the diagonal blocks.

Example

A B
(A and D square)
0 D

det J = det A det'D

J = (A.1)

(A.2)

2. If a square matrix J is partitioned with A and D
square as,

A B

J = (A.3)
c D

and if det D#0, then

det J = det D det(A-BD 'C) (A.4)

This is often called Schur's formula.
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3. If A and B are sqaure of the same dimension then

det AB = det A det B (A.5)

4, If any two rows (or two columns) of a square matrix
are interchanged, then the determinant of the
resulting matrix is the negative of the determinant
of the original matrix.

5. The determinant of a square matrix is equal to the
product of its eigenvalues.

If each element of a row (or column) of a square
matrix is multipled by -1, the determinant of the
matrix changes sign.
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Discussion

Adam Semlyen (University of Toronto): I would like to congratulate the
authors for their interesting and thought provoking paper. Certainly,
many power system engineers have wondered whether the load flow
Jacobian could provide information on the stability of the system, in
addition to its loadability. It appears from the paper that the answer is
almost completely negative since, if there is any relation between Jir
and J,y, (the dynamic state Jacobian of the system), it is only related to
their singularity, i.e. one real eigenvalue becoming zero. Before this hap-
pens, as the system is more and more heavily loaded, complex eigen-
value pairs of Jy, may cross the imaginary axis into the unstable domain.
Even the singularity of Jyz or of Jsys is not a definitive indication
whether the system is stable or not since in that case the stability analysis
can not be based solely on linearized models. As the authors correctly
point out, the exact load flow solution can be obtained even for a turning
poimA (i.e. extreme loading condition). Even Newton’s method (in a
modified form) can be used for that purpose™®.

The fact that system stability is not solely related to the load flow
equations is well known but the general formulation of a dynamic prob-
lem in the form

x=f(x) 1)
may be suggesting the opposite, since it leads directly to the equations of
the steady state

fx)=0 @

There are no distinct Jacobians in this formulation. In reality, what we
use for the load flow problem is not eqn.(2) but is an equation embedded
in f (x)=0. This will be shown in more detail below. For this purpose we
first rewrite (1) and (2) in the more general form

*=¢(x.y) (3a)

y(x,y)=0 (3b)
and

4(xy)=0 (4a)

yix,y)=0 (4b)

where y are auxiliary variables to be eliminated using the second set of
equations.

In the particular case of power systems, the dynamics of the syn-
chronous machines and of the induction machines at load buses is
described by

MarD (%, 0)(@~00) =Prrech (% O}~y (¥, 6,8) Q)

where D and pouecs are shown to depend, in addition to ®, on other state
variables x as well (reflecting thus the effect of controls); p,; depend on
the machine angles § and the bus voltages v and their angles 6. Thus the
system dynamic equations are

o=M"" [pm;.(x. ©-pa(v,0,8-D (x, ‘D)((D—(Doj (62)
8=0-wp (6b)

x=g(x,w) (60)

Gload (v, ©)~q (v, 0)=0 (6d)

The last equation refers to the reactive powers.

In steady state the right hand side of eqns.(6) equals zero. This
yields

8=5, (7a)
0=y (7b)
x=xq (7c)
Substitution of (7) into (62) and (6d) gives
Pet(¥: 8,80y Prmecn (0, 00)=p (v,8)=0 (8a)

9e1 (V1 0)~q10aa (v, @0) =¢ (v,6)=0 (8b)

Equations (8) are the load flow equations. They have been obtained
directly from the right hand side of the dynamic equations but part of the
content of the latter has disappeared in the process. Clearly, the load flow
equations are embedded in the dynamic equations as a kernel and are
devoid of the information which is essential to the dynamics of the sys-
tem. Most importantly, the damping term with D (x, ®) is missing and
Pumech does not include the effects of the controls. These remarks apply
also to the linearized forms of the paper, in particular as shown in
eqns.(55) and (86).
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Stability Analysis", Elsevier Science Publishing Co., Inc., 1988.
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lapse Conditions", Proceedings of "Bulk Power System Voltage
Phenomena: Stability and Security”, held on 18-24 September 1988
at Trout Lodge, Potosi, Missouri; published by EPRI, Report EL-
6183, January 1989.

Manuscript received August 2, 1989,

K. R. Padiyar (IIS Bangalore, India): The authors of this
paper are to be complimented for providing a clear exposition of
the relationships between the standard load-flow Jacobian and
system dynamic state Jacobian. There is renewed interest in the
analysis of steady-state stability due to the concerns regarding
voltage instability problems. Although the system dynamics are
usually neglected in the analysis of voltage instability, this is not
always realistic.

The steady-state instability is associated with the crossing of a
real eigenvalue of the system from LHP to RHP, and hence the
condition for singularity of the system Jacobian is of interest. As
power flow is increased, the load flow Jacobian and consequently
the system Jacobian tends to be singular. I would appreciate if
the authors can respond to the following queries:

1. Is it possbile to predict the critical load pattern which
would lead to the singularity of the Jacobian? For lossless
systems with PV buses it is possible to invoke the concept
of minimal cutsets (see Ref. A).

2. Is it possible to relate the determinant of Jg’}); with that
of Jpr, at least in the simplified case of systems with PV
buses?

Reference [A] A. Arapostathis, S. Sastry and P. Varaiya, “Anal-
ysis of Power Flow Equation”, Memorandum No. UCB/ERL
M80/35, 1980.

Manuscript received August 30, 1989.

P. W. SAUER and M. A. PAI: We thank Professors Semlyen
and Padiyar for their interest in the paper and added discussion.
Both discussers comment on the critical load level and the pres-
ence of algebraic equations. In regard to critical load level, the
fundamental issue is normally how load is distributed between
buses (both real and reactive). If the distribution is specified in a
meaningful way such as some percentage of total load, a critical
load level can be computed. If the distribution is not specified
in a meaningful way, the critical load patterns can be physically
unreasonable.



In the relation of Jacobians, one issue which has caused consid-
erable discussion is the notion of “PV” buses. In load flow this
means bus voltage magnitude and real power are fixed while bus
voltage angle and reactive power vary as required. In dynamic
analysis we would assume this to mean that the bus voltage was
controlled by an automatic voltage regulator with some source
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of reactive power such as a synchronous machine. If all buses
are synchronous machines in special case (b), then J,(,bl),; is sim-
ply Kg and Jpr is simply —K,. We have.not as yet found any
relationship between the determinants of K¢ and K;.

Manuscript received August 30, 1989.



