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Abstract - This paper presents a small-signal security
assessment too! (SSAT), which integrates the latest in the
development of computational algorithms with the analysis
requirements from the industry. It provides advanced features
for the small-signal security assessment as well as extensive
capabilities for conventional small-signal stability analysis.
The theoretical foundations of SSAT are described and its
computational capabilities illustrated with. numerical
examples.
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1. INTRODUCTION

Small-signal stability, along with transient and voltage
stability, determines the dynamic characteristics of a power
system [1]. The small-signal stability problem of a power
system is usually one of insufficient damping of system
oscillations and its analysis is normally based on the linearized
system dynamic equations using modal (eigenvalue) analysis
techniques.

Small-signal security assessment of a power system refers to
the small-signal stability analysis of the system under a set of
credible. contingencies for .a. range of feasible. operating
conditions. The system is small-signal secure if the damping of
all critical modes in the system are within a required threshold.
Small-signal security assessment is the sibling of the other two
forms of the dynamic security assessment, namely transient
and voltage security assessment. Together, they determine the
overall dynamic security status of the system.

With the growth of interconnected power systems, many
problems related to small-signal stability have been reported,
including major incidents [2]. Recently, as the power industry
goes through the deregulation process and open access to the
grid becomes possible, system security is often of critical
concern, particularly for contingency and operating conditions
that are subject to security constraints (including small-signal
security) [3]. This is a direct consequence of the reduced
generation reserve margins and increased power transactions
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in many of the systems. On the planning side, addition of new
generations into existing power pools also requires extensive
assessment of their impact on the damping of the systems [4].

The theory and analysis method for small-signal stability -
problem have been well established [1]. Algorithms applicable
to the eigenvalue analysis of large systems are available
[5,6,7,8]. Several computer programs based on these
algorithms have been developed [2]. These theoretical and
developmental breakthroughs in the past ten years have greatly
helped the understanding and advancement of the small-signal
stability analysis. They are now routinely used in the modal
analysis of power systems and the control system design and
tuning to improve system damping. Most of the currently
available analysis tools, however, are designed mainly to
perform eigenvalue analysis, without appropriate capabilities
for security assessment. In addition, some of the tools are
developed with specific modeling assumptions and
requirements that may not be fully compatible with models
used in the traditional transient stability analysis using the
time-domain simulation approach. This can make it difficult to
validate the small-signal analysis results.

This paper introduces a small-signal security assessment tool
(SSAT), which is designed to integrate the latest in the
development .of. computational algorithms- with the . small-
signal security assessment requirements from the industry. The
computation and study features of SSAT are described in
details in the paper, illustrated by two numerical examples.

II. MOTIVATIONS OF THE DEVELOPMENT

The main driving force of the SSAT development is the
demand from the power industry for an analysis tool that
allows the extensive studies of a wide range of the small-signal
stability problems, such as

e conventional eigenvalue analysis for identification of poorly
damped modes and design of control systems to improve
damping.

¢ security assessment capabilities to help determine planning
and operating guidelines for systems with existing or
potential damping problems.

¢ validation and tuning of generator and associated control
models.

¢ potential on-line security assessment.
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From the application point of view, there are three basic
requirements for SSAT:

¢ Modelling capability:
= compatibility with the standard models used in traditional
transient stability analysis.
= advanced user-defined modeling capabilities for
representation of non-standard generator control devices,
HVDC, and FACTS devices.

¢ Computational features:
= basic eigenvalue solvers for different types of modes.
» advanced security assessment capabilities for contingency
analysis, transaction analysis, etc.

e User friendliness:

» this requires a good user interface for input data
processing, computation monitoring, and output result
analysis. These issues are outside the scope of this paper
and will be discussed in a separate paper.

As described earlier, very powerful algorithms exist for
eigenvalue computations of large power systems. Therefore,
SSAT is not focused on the further development of eigenvalue
algorithms; rather, the main attention is to provide the required
level of modelling support and to make available the necessary
analysis capabilities. On the eigenvalue computation side, the
state-of-the-art algorithms are employed with enhancements to
achieve superior performance.

III. SOLUTION METHODS

The solution methods are implemented in SSAT at two levels:

* The first level consists of basic computation algorithms;
most of them are different types of eigenvalue solvers used
by the security assessment options at the second level.

* The second level consists of various security assessment
options.

This section is focused on the security assessment options,
with a brief description of the eigenvalue solvers used at the
first level.

3.1 Eigenvalue solvers

Three basic eigenvalue solvers are available in SSAT to meet
different computation objectives:

* The classic QR method. This is used for computation of all
system eigenvalues. In SSAT, the performance of this
algorithm is enhanced by using the Intel Math Kemnel
Library (MKL) (available at http://developer.intel.com/vtune/
perflibst/mkl/index.htm). MKL contains the BLAS routines
for matrix-vector and matrix-matrix operations, fully
optimized on the Intel Pentium-family microprocessors.

Testing using SSAT has shown that its speed can be 100%
faster than the code with the conventional optimization. This
makes it feasible to analyze relatively large systems within
reasonable computation time. Complete eigenvalues of
systems with up to 3,000 dynamic states (representing
approximately 300 generators with detailed models) have
been computed on mid-range PCs with good speed
performance and accuracy.

Implicitly Restarted Amoldi Method (IRAM) [9]. This is an
enhanced version of the Modified Arnold Method (MAM).
Instead of explicitly restarting an iteration using a trial
vector in MAM, IRAM restarts an iteration by performing
matrix transformations for the results obtained in the
previous iteration. This reduces the number of time-
consuming matrix-vector multiplication required in building
the Hessenberg matrix and allows the use of a technique
known as polynomial filtering to enhance the convergence.
The resulting algorithm is faster and has better convergence.
IRAM is used in SSAT,
* to compute eigenvalues within a frequency and damping
range, or close to a specified location
» to determine small-signal stability index
* as the base eigenvalue solver in eigenvalue sensitivity
analysis, small-signal stability limit determination, and
mode trace

¢ The enhanced AESOPS algorithm [8]. This is a type of
selective eigenvalue analysis method and is found to be very
effective in computing modes (mostly local) related to a
specified generator in a large system model. This allows the
efficient studies of local modes without the need to reduce
the system model or. to_perform excessive mode searches. A
brief description of the enhanced AESOPS algorithm used
in SSAT is described in Appendix.

3.2 Small-signal security assessment

The small-signal security assessment options in SSAT are
designed to address the following two key issues:

¢ Determination of the small-signal security status of a system
at a specific operating point. This is measured with a small-
signal security index.

» Determination of the system operating limit subject to the
small-signal security constraint. This is performed using the
transaction analysis with a specified small-signal security
index threshold.

In both cases, a set of contingencies can be considered. The
small-signal security assessment for a contingency applies to
the post-contingency steady-state powerflow condition.

Small-signal security index

The small-signal security index of a system is defined as the
damping ratio of the least stable rotor angle mode. This
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definition excludes the control modes that are mostly confined
in the control systems of dynamic devices. Therefore they are
normally not of concern for the system security.

To compute the small-signal security index, the following unit-
circle (Mobius) transformation algorithm [7] is applied to the
system state matrix A:

S=(A-s;D (A-s,]) )
This transformation can map a constant damping ratio line on
the complex plane into a circle of the unit radius, as shown in
Figure 1.

Figure 1 — Unit-circle mapping

Therefore, the determination of the least stable mode is
converted to the computation of the mode with the largest
modulus which can be done easily for large systems with a
number of partial eigenvalue solvers. In the implementation,
the computation is carried out for n modes of the largest
modulus to ensure that at least one rotor angle mode is caught
in the computation.

One of the direct applications of the small-signal security index
is the ranking and identification of critical contingencies. This
is illustrated by an example in Section V. This index is further
used in the small-signal stability limit determination, as
described in the following.

Small-signal stability limit determination

In the small-signal stability limit determination problem, a
power transaction is scheduled in a system. The objective is to
find if the transaction is secure for a given small-signal
security index threshold, and if not secure, what is the secure
power transfer level that does not violate the index threshold.
This problem is very similar to the determination of the
stability limits with the transient or voltage security constraint

[3].

A power transaction is referred to as a specified power transfer
arrangement between groups of generators or loads. The
change of generation/load in one part of the system (sink) is
specified and is to be balanced by a change of the
generation/load in another part of the system (source).

The process to determine the small-signal stability limit for a
power transaction (this is also referred to as transaction
analysis) is as follows. Referring to Figure 2, the power transfer
in the specified transaction is dispatched at P, (base), P, ...,
P, P, according to certain rules (for example, using an iterative
binary search method) and the corresponding small-signal
security indices ({) are computed. The stability limit is found
when the security index goes across the threshold value ).
Computationally, the stability limit can be determined when the
difference between the last secure power transfer (P,) and the
first insecure power transfer (P,) is small enough.

The above process is applied for all contingencies to find the
final small-signal stability limit for the transaction.

Lo

Smallsignal security index {{)

a
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Py P, Ps
Power transfer level (P)

Figure 2 — Stability limit search
Mode trace

A variation of the small-signal stability limit determination
problem is to trace a number of specified modes for a given
transaction with a set of contingencies. This is useful if it is
known that these modes are most critical to the system
security even though they may not necessarily be the least
stable modes for the particular operating condition. SSAT is
able to handle this situation with the mode trace computation
option. In this option, modes computed for the base case can
be traced under different power transfers and/or with different
contingencies. Two modes in two different system conditions
are matched if

¢ the location of the dominant entries of the right eigenvectors
are the same, and

¢ the 2-norm difference of the normalized right eigenvectors is
small enough. :

3.3 Contingency analysis

Contingency analysis is an important part of a security
assessment process. In SSAT, all analysis options (except for
analysis of the single-machine-infinite-bus configurations) can
be applied to any number of contingencies consisting of
combinations of the following disturbance types:
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* Bus outage

* Branch outage

* Generator outage
* Load shedding

"~ In a contingency analysis, an integrated powerflow solver
solves the post-contingency powerflow after applying the
disturbances to the network, and then the specified analysis
option is performed for the post-contingency powerflow
condition,

IV. CAPABILITIES OF SSAT

To fulfill different objectives in small-signal security
assessment, the following computation options are available in
SSAT:

(1) Complete eigenvalue analysis. This is to compute all
modes of the system, with three possible configurations:
* The entire or a selected portion of the system
* The single-machine-infinite-bus (SMIB) simplification
for all generators in a selected portion of the system
* A fully customizable SMIB system

(2) Computation of modes closest to a specified value. A
specified number of modes of the system closest to a
value (frequency and damping) anywhere on the complex

plane can be computed.

Computation of modes within specified range. All modes
within a specified range (frequency/damping or
real/imaginary) on the complex plane can be computed in
SSAT. One application of this feature is to compute all

€))

modes.within.a specified frequency range. with a.damping

threshold.

Computation of modes related to a generator. This option
computes all modes dominant in a specified generator.
This is useful to find local (or interarea) modes related to
the generator.

@

(5) Response calculations. Frequency or step (time) response
computations from the linearzed system model (Single
Input Multiple Outputs (SIMO) computation model) are
provided in SSAT. This feature is implemented for

control system design and tuning.

Sensitivity analysis. Sensitivities of a mode with respect
to any of the following operating conditions and system
parameters can be computed in SSAT:

¢ Generator outputs

¢ Bus voltages

¢ Branch power flows

® Load powers

¢ Parameters in dynamic models

6

The sensitivities are obtained by the numerical
perturbation method in which a sensitivity is determined

by computing a pair of modes, one with the value in the
base case (or a post-contingency case) and the other with
a “perturbed” value.

(7) Small-signal security index computation. A small-signal
security index (see Section 3.2 for discussions) can be
computed for the base and all specified post-contingency

conditions.

(8) Small-signal stability limit determination. This is also
referred to as the transaction analysis. The definition and
procedure of a transaction analysis are discussed in

Section 3.2.

(9) Mode trace. This feature traces a number of specified
modes for a set of contingencies and a given power

transaction. Details are discussed in Section 3.2.
Modelling capability

SSAT supports power system network and dynamic device
models commonly used in the transient stability analysis. It is
made to be fully compatible with some of the largest system
models, such as the eastern US-Canada interconnected model
series compiled by the System Dynamics Database Working
Group (SDDWG) of NERC. User-defined models are
supported to represent non-standard models and
HVDC/FACTS models.

V. NUMERICAL EXAMPLES

Two test systems shown in Table 1 are considered to illustrate
the capabilities of SSAT.

Configuration System 1 System 2

No. of buses 557 26,282
No. of generators 102 3,802

No, of states 1,062 37,563

Table 1 — Summary of the test systems
3.1 Test System 1

Figure 3 shows the critical portion of this system. Power from
10 units at buses 100, 108, and 109 is transferred through four
345-kV circuits (A, B, C, and D) to the rest of the system. It is
known that this power transfer is subject to stability constraint.
The transfer is at 3182 MW in the base case and under this
condition an interarea mode is found at 0.837 Hz with a
damping of 2.88%. In this mode, the portion of the system
shown in Figure 3 swings against the rest of the system. Two
problems are examined:

 This mode is traced for all N-1 and N-2 contingencies in the
entire 345 kV network (total over 5,500 contingencics).
This is to identify critical contingencies that may cause
severe damping concerns. :
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Rest of the system
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Figure 3 — Schematics of test system 1

¢ For a damping criterion of 3% to ensure the small-signal
security, the maximum secure power transfer at the critical
interface is to be found.

Contingency analysis
The interarea mode is traced for all post-contingency

conditions. It is found that the damping of this mode would
become less than 1% for 17 contingencies. Table 2 shows the

" 5 worst cases. Note that the damping of this mode goes to

nearly zero for a couple of contingencies. This should cause
concerns for the operation of the actual system.

Contingency Frequency (Hz) Damping Ratio (%)
1 0.699 0.061
2 0.766 0.169
3 0.710 0.360
4 0.711 0.416
5 0.793 0.423

Table 2 — 5 worst contingencies for damping
Small-signal stability limit determination

As shown in the contingency analysis, the base case has very

low damping under some contingencies and this indicates that

the base power transfer at the critical interface would be
insecure for the 3% damping criterion, To find the secure
power transfer, a transaction to gradually reduce the power
transfer at the critical interface is defined in which the
generation from the 10 units is decreased while the generation
from the rest of the system is increased. SSAT automatically
dispatches the powerflow at the specified transfer levels

according to this rule and traces the required mode for
specified contingencies at each powerflow level,

For purpose of illustration, Figure 4 shows the computation
results for the no-fault case and the two worst contingencies. It
is clear that the 3% damping is satisfied for the no-fault case
and the two contingencies when the transfer is reduced to 2445
MW. This is the required stability limit. '

'
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Figure 4 - Small-signal stability limit

It is interesting to note from Figure 4 that the power transfer is
limited by contingency #2 which has slightly higher damping
than contingency #1 at the base power transfer level. This
indicates the highly complicated relationship between the
power transfer and damping under various contingencies. It is
therefore important to include sufficient number of critical

.contingencies in the stability limit determination.

5.2 Test System 2

This is a very large system model, representing the entire
eastern US-Canada interconnected system. Two examples are
shown:

¢ Computation of interarea modes
¢ Computation of a specified local mode

In both cases, the full system representation is kept, so no
special model reduction is required to perform these
computations.

Computation of interarea modes

The computation of interarea modes can be most efficiently
done by using the computation option to calculate modes
within a specified frequency range. In this example, all modes
within the frequency range of 0.2 and 0.6 Hz with damping
less than 10% are computed and Table 3 shows all 9 interarea
modes found.
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No. Frequency (Hz) Damping Ratio (%)
1 0.306 8.53
2 0.366 3.92
3 0.380 2.31
4 0416 3.51
5 0.446 3.04
6 0.468 3.60
7 0.549 2.51
8 0.563 3.82
9 0.600 3.95

Table 3 — Interarea modes of Test System 2

Figure 5 shows the mode shape of the first mode (at 0.306 Hz). Each
symbol in the figure represents the normalized right eigenvector entry
for a generator. From this mode shape, it is seen that the generators in
the eastern portion of the system have a large phase angle (close to
180°) against the generators in the western portion of the system.
Therefore, this mode represents an east-west (interarea) oscillation in
the system.

Generators in the
western portion
of the system

Generators in the
eastern portion
of the system

Figure 5 — Mode shape of the 0.306 Hz mode
Computation of a specified local mode

The objective of this example is to find the local mode at the Rush
Island generating units in the Ameren UE area. This mode is the focus
of several investigations [10] after the oscillation incident in 1992
involving the Rush Island units.

This mode occurred as a result of a contingency that effectively
disconnected two of three circuits connecting the Rush Island units to
the rest of the system. Under this condition, a local mode around 1
Hz at Rush Island may become poorly damped to cause sustained
oscillations. To find this mode, the option in SSAT to compute
modes related to a generator is used, after applying the contingency
to the base case. This mode turns out to be at 1.28 Hz with a
damping ratio of 4.19%. Figure 6 shows a time-domain simulation
verification performed using the full nonlinear simulation in which

one of the Rush Island unit speed is plotted. The simulation clearly

shows an oscillation at about 1.3 Hz.

Generator speed (Hz)
60.300

80.200 |

60.100

\/

59.800
0000 3.000 6.000 6000 12.000 15.000

Time in seconds
Figure 6 ~ Simulation verification of
the Rush Island mode

The significance of this example is to show the capability of SSAT to
selectively compute local modes in a large model. Using the usual
eigenvalue analysis approach, this kind of computation would likely
need preliminary model reduction work, or an extensive mode scan in
the crowded local mode frequency range. Being able to directly locate
the required mode with the base study model helps significantly
improve the efficiency of the studies.

VL CONCLUSIONS

This paper presents a tool (SSAT) for small-signal security
assessment of power systems. It is developed as a result of the calls
from the power industry for a program to meet the increasing need of
systemn studies. The focus of this development-has been to provide
superior modelling support and capabilities for the security
assessment, while taking advantages of the recent advancement in the
basic computational algorithm development (such as eigenvalue
solvers). The theoretical foundations of SSAT are described and its
computational capabilities illustrated with numerical examples.
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Appendix ~ The Enhanced AESOPS Algorithm

The linearized power system dynamic model in the Laplace
domain can be expressed in the following general form:

sx; =ayxy +AppX; + BV (A-1)

sXp = Agx) + ApX; + BoV (A-2)

0= Clxl + CZXZ +DV ' (A-3)

where [x,; X;T]T is the staté vector and V is the voltage vector.

X) is any state in the system. Eliminating X, and V from (A-1)-
(A-3), we obtain

sx; =[a;; - B'D"! (5)C')x, (A-4)

In the above, matrices B’, C', and D'(s) can be easily deduced
from (A-1)-(A-3). It is clear that any value of s satisfying (A-4)
is an eigenvalue of the system. We now solve an eigenvalue A
from (A-4) using the Newton method. First notice that, after
neglecting the higher order terms, D'(A)C’ can be expressed
as

D" (A)C'* D™ (A )CHD T )LD T A)C A - A)  (A-5)

where Ay is an approximate value of the eigenvalue and
Ip = [(I) g] . Substituting (A-5) into (A-4) yields the following
formula to iteratively compute an eigenvalue:

Meat = i + 37 ()3 - B'D' ™ (A )C'-Ay] (A-6)

where J(A ) =1+BD™' (\)eD"™' (A )C' . In this algorithm,
B'D"'(A) and D”'(A)C’ can be efficiently computed based on
a sparse formulation, such as the one described in [1]. The
algorithm (A-6) converges quadratically, and if the state x, is
selected to be the speed of a generator, it has exhibited very
good convergence to a mode that is mostly dominant in the
generator.
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