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Abstract — A powerful package of integrated programs for small
signal stability analysis of large interconnected power systems is
described. The package has extensive modelling capability and uses
alternative eigenvalue calculation techniques, making it suitable for
the analysis of a wide range of stability and control problems.
Results of eigenvalue calculations for three power systems of
differing size and complexity are presented and the accuracy,
consistency and convergence of the alternative calculation methods
are discussed.
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INTRODUCTION

Power system stability was first recognized as an important problem
in the 1920s {1]. From the beginning, for convenience in analysis,
gaining a better understanding of the nature of stability problems
and developing solutions to the problems, it has been the usual
practice to classify power system stability into two broad categories:

®  Large disturbance stability; and
®  Small disturbance stability.

The traditional large disturbance stability problem is related to the
short term or transient period, which is usually limited to a few
seconds following the disturbance. It is concemed with the system
response to a severc disturbance, such as a transmission system
fanlt. Much of the ¢lectric utility industry effort and interest related
to system stability to date have been concentrated on the short-term
response, and as a result the system is designed and operated so as
to meet .a set of reliability criteria concerning transient stability.
Well established analytical techniques and computer programs exist
for the analysis of wransient stability. In recent years, the need for
studying the response of the system for longer periods has been
recognized, and the terms mid-term and long-term stability have
been introduced. Analytical tools for studying these aspects of
system stability are evolving.

Small disturbance or small signal stability is concerned with the
system response to small changes and is a fundamental requirement
for the satisfactory operation of power systems. Usually, the
problem is one of ensuring sufficient damping of system
oscillations. In general, the stability properties of the oscillatory
modes do not depend on the size of the system disturbance and
hence can be analysed by considering the system linearized about an
equilibrium point represented by a steady state operating condition.
This allows the use of powerful analytical methods applicable to
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linear systems to determine the stability characteristics which aid in
the design of corrective controls. The analysis of small signal
stability is not as wide spread as transient stability analysis. There
are no standard study procedures or commonly accepted
performance criteria with regard to small signal stability. Many
utilities take small signal stability for granted and carry out no
studies at all or depend on transient stability simulations to reveal
problems related to small signal performance. This is primarily
because, in the past, a system which remained stable for the first few
seconds following a severe disturbance was sure to be stable for
small perturbations about the post fault system condition. This is not
true for present day systems. As power systems develop, the need to
conduct small signal studies and to take measures to ensure that
sufficient stability margins exist is being increasingly recognized,
and a number of special purpose small signal stability programs
have been developed (2-9].

One of the deterrents to the wide spread use of small signal stability
programs has been their computational and modelling limitations.
This' situation has changed and recent - developments in
computational methods allow the analysis of large complex power
systems.

In this paper, we will describe a comprehensive computer program
package for the analysis of small signal stability, developed at
Ontario Hydro with cofunding by EPRI

METHODS OF SMALL SIGNAL STABILITY ANALYSIS

The small signal stability of a power system may be analysed using
any of the methods applicable to linear systems. However, the
modal analysis approach using eigenvalue techniques has many
advantages.
Conventional eigenvalue programs form the state matrix of the
system and then use a general purpose routine to compute all
cigenvalues of the matrix. Most commonly, routines for eigenvalue
calculation use the QR transformation method, originally developed
by Francis [11]. The method is robust and converges rapidly, and is
available in a number of very good general purpose commercial
codes, The following are the strengths of conventional eigenvalue
based small signal stability programs:

— All modes are clearly separated and identified by the
eigenvalues.

—  Mode shapes and the relationships between different modes
and system variables or parameters are easily identified using
eigenvectors.

However, the conventional cigenvalue based stability programs
require large amounts of computer storage. The eigenvalues are
computed from the system state matrix, which has no special
structure that can be exploited so as to be able to analyse very large
systems. This restricts the size of the system to a few hundred
dynamic states.

To overcome the size limitations of the conventional eigenvalue

programs, special techniques have been developed that focus on

evaluating a selected subset of eigenvalues associated with the
complete system response. One such technique is the AESOPS

(Analysis of Essentially Spontanecous Oscillations in Power

Systems) algorithm [4], developed under the EPRI project RP744-1,

0885-8950/90/1100-1076501.00 © 1990 IEEE



It uses a novel frequency response approach to calculate the
eigenvalues associated with the rotor angle modes. References {5)
and [6] describe improved implementation of the AESOPS
algorithm,

A number of other powerful methods for the computation of
cigenvalues associated with a small number of selected modes of
oscillation have been published in the literature on power system
stability [7]-[9]. Reference [7] describes the application of two
sparsity-based eigenvalue techniques: simultancous iterations and
modified Amoldi method. The S-method described in (8) is suited
for finding the unstable modes. The Selective Modal Analysis
(SMA) approach described in [9] computes eigenvalues associated
with selected modes of interest by using special techniques to
identify variables that are relevant to the selected modes, and then
constructing a reduced order model that involves only relevant
variables.

Each of the methods described above has special features which
make it attractive for a particular type of application. However,
none of these methods satisfies all the requirements of small signal
stability analysis of power systems. The best solution, therefore, is
to use several techniques in a complementary manner,

SMALL SIGNAL STABILITY PROGRAM PACKAGE

Under a joint effort with EPRI (Project RP2447-1), Ontario Hydro
has developed a comprehensive Small Signal Stability Program
(SSSP) package which provides facilities for representing the
system components with a wide range of models and for computing
cigenvalues using several alternative techniques. In addition, the
program package computes additional information about the system
dynamic characteristics which enhance the overall understanding of
the phenomena being investigated and assist in the design of
corrective controls.

The SSSP package has two principal constituent programs:

~  Multi-Area Small Signal stability program (MASS), and

—~  Program for Eigenvalue Analysis of Large Systems (PEALS).
MASS is ideally suited for detailed analysis of small to medium
sized power systems and for use in the design of controls. PEALS,
on the other hand, by limiting the eigenvalues calculated to those
associated with a few selected modes, is able to determine the
stability characteristics of very large systems with no compromises
in modelling detail.

In addition, the package contains a Dynamic Data Bank Program
which facilitates the storage and retrieval of data for dynamic
devices, required for running MASS and PEALS. Currently a
System Reduction Program is being developed as part of the SSSP
package.

Modelling Capabilities of MASS and PEALS
An important requirement for any stability program is the detail and
flexibility of representing power system components. The SSSP
package has the ability to represent all standard models normally
used in stability studies. In addition, provision is made for user-
defined models to. accommodate special modelling requirements.
The following is a summary of modelling capabilitics of MASS and
PEALS.
Synchronous machines:
Up to 3 rotor circuits may be represented in each axis.
Saturation may be represented by separate characteristics in the
d and q axis. Turbine-generator rotor may be represented as a
multimass shaft system having up to 9 masses.
Excitation and Speed Governing Systems:
All standard IEEE models may be represented. User-defined
models allow representation of nonstandard models and special

1077

control schemes. Excitation systems may have up to 14
control inputs of which 4 can be associated with remote buses.
Speed governors may have speed, power and one remote bus
angle as control inputs.

Loads:
Static loads may be represented as either constant impedance

loads or nonlinear voltage dependent loads. Dynamic loads
may be represented as induction or synchronous motor loads.
HVDC links:
A two terminal DC link model with line dynamics and
equidistant firing angle control is provided as a standard model.
Modulation using signals from local and a remote AC bus
voltage may be represented. The user-defined control model
allows detailed representation of any specific two terminal DC
installation, with up to 23 control inputs, 8 of which are
associated with remote buses.
Static Var Compensators:
Two options are provided, one accounts for the thyristor
controlled reactor nonlinearities and the other assumes perfect
linearity. The user:defined model allows representation of
special controls, with up to 12 control inputs, 7 of which are
associated with remote buses,

User-Defined Models

Facilities for representing controls associated with generating units,
HVDC links and SVCs by user-defined models offer practically
unlimited freedom in modelling these devices. User-defined models
are constructed by interconnecting elementary blocks, defining their
inputs in terms of system quantities and their outputs as a
combination of the outputs from the elementary blocks. The blocks
and their interconnections are specified by the user as part of the
dynamic data and no additional programming is required. The menu
of elementary blocks consists of normal linear system transfer
function elements together with non-linear elements which are
automatically linearized within the program. The non-linear
elements vary with the type of device being modelled, for example
excitation system user-defined models may use, as output devices,
all the recommended IEEE exciters with the AVR specified by
linear transfer function blocks. System inputs may be chosen from
local and remote bus voltages and angles, line real and reactive
powers, and line currents. Fach user-definéd device has a
predetermined output. For example, the output of an excitation
system is field voltage and that of a dc converter is fiting angle.

Formulation of Device State Equations

The component connection modelling technique [10] is used for
construction of the state equations for each device. The state matrix
is assembled from the individual component models of the elements
of the devices.

The linearized model for each dynamic device is expressed in the
following form:

Xg = Agxq + ByAv [¢)]
Aid = Cdxd - YdAV )
where

xg are the perturbed values of device state variables
ig is the current injection into the network from the device
v is the vector of the network bus voltages
A is a prefix representing perturbed values
In (1) and (2), B4 and Y4 have non-zero elements corresponding

only to the dynamic device terminal voltage and any remote bus
voltage used to control the device.

The formation of the state matrix for each user-defined control, and
its integration with the state matrices of other devices is performed
similarly to the formation used for standard models.




SPECIAL FEATURES OF MASS

The MASS program forms the state matrix of the interconnected
power system and computes all eigenvalues of the matrix using the
QR transformation method. It also computes right/left eigenvectors
and uses these to compute:

~  participation matrix;
—  time response of generator quantities to step or impulse input;
and

—  steady-state frequency response to a sinusoidal input signal.
The right eigenvector gives the "mode shape”, i.e. the relative
activity of the state variables when a particular mode is excited. One
problem in using the eigenvectors for identifying the relationship
between the state and the modes is that the eigenvectors are
dependent on units and scaling associated, with the state variables,
However, the participation matrix, which combines the right and left
cigenvectors, provides a better indication of the association between
the state variables and the modes [9]. We, therefore, use the angles
of the eigenvector elements to give the phase relationships between
state variables, and the magnitude of the participation matrix
elements to give the net influence of a state variable on a mode.

The MASS program is capable of representing the power system
cither as a single area or as multiple areas. In the single area
representation, the system is analysed as a whole. In the multiarea
representation, the overall system is split into a number of areas
whose modal characteristics are first analysed individually. The
model of each area is reduced by mode elimination and the reduced
area models are’ interconnected to compute eigenvalues of the
interconnected system.

Formulation of the System State Matrix in MASS
The state equations of (1) and (2) for all the dynamic devices may

be combined into the following form:
%= Apx + BpAv 3)
Al = CDX - YDAV 4

where x is the state vector of the complete system, and Ap and Cp
are block diagonal matrices composed of Ag4 and Cg4 associated with
the individual devices. By and Yy, are not block diagonal in general
due to remote sensing. Note that the current injection vector Ai has
non-zero elements only for dynamic device buses.

The interconnecting network is represented by the node equation:

Al = YnAv )
The elements of admittance matrix Yy include the effects of voltage
dependent nonlinear loads which, for small signal analysis, can be
represented by equivalent shunt admittances [10).

The overall state equation is formed by eliminating Al and Av from
(3), (4) and (5), to give

x=[Ap +Bp(Yn + Yp) 'Cplx = Ax 6)
The state matrix A of the complete system when represented as a
single area is, thus, given by: i

A =Ap +Bp(¥Yy+Y¥p)'Cp )]
For multiarea representation the same general approach is used.
Each area state equations are expressed in the form (3) and (4), and
the eigenvalues and eigenvectors of the state matrix are determined
with the interarea ties open. These are used to express the area state
equations in the decoupled (modal) form by transformation of the
state variables:

% =Uszy (8)
where

X, are area state variables

U, are eigenvectors of area state matrix
Zn  are the new state variables related to area modes
The transformation of the area state equations into the modal form

-allows system reduction by mode elimination. The reduced state

equations are then interconnected through tie-line node equations to
give the reduced state matrix of the overall system.

SPECIAL FEATURES OF PEALS

PEALS has the ability to represent very large systems. Unlike
MASS, it does not formulate the system state matrix. Instead, the
state equations associated with the dynamic devices and the
interconnecting network equations are organized 5o as to exploit
sparsity and allow use of special technigues which evaluate
eigenvalues associated with a selected subset of system modes.

At present, the following two alternative techniques are employed in
PEALS to compute cigenvalues: AESOPS algorithm, and modified
Arnoldi method (MAM),

Among the eigenvalue calculation methods applicable to very large
systems, we found these two methods particularly attractive. They
are quite efficient and complement each other in meeting the
different requirements of PEALS applications.

The AESOPS algorithm computes only the rotor angle modes. One
complex pair of eigenvalues and the corresponding speed
components of the related eigenvector are computed at a time.

The modified Amnoldi method allows the determination of a small
number (typically up to five) of system eigenvalues close to a
specified eigenvalue. The method is a generalized Galerkin method
and is similar to the Lanczos method, but more reliable [7]. It was
first discussed in [12] based on the classical Amoldi method, and its
application to power system stability analysis was proposed in [7].
Unlike the AESOPS algorithm, it can compute eigenvalues
associated with any system mode, not just the rotor angle modes.

In addition to eigenvalues, PEALS has facilities for computing the
following:

~  participation factors;

—  network bus voltage change vector; and

—~  frequency response.

Bus voltage changes are helpful in identifying ideal locations for
adding voltage control devices such as SVCs.

Implementation of AESOPS algorithm

The AESOPS algorithm is derived from the linearized equation of
motion of a generator:

%m:n,, - [xs<s)—A;‘?l+xp(s)Am] ®
The above equation recognizes that synchronizing and damping

torque coefficients Kg and Kp are functions of complex frequency s.
Rearranging (9)

Ks(s)
AT, = [%pr(s) =2 ] Am 10
The eigenvalues of the system are given by the zeros of
(s)
%smp(s)», K“s =0 an

It can be seen that, provided A is not zero, the eigenvalues are
those values of s which force ATy, to be zero. This is used by the
AESOPS algorithm, which determines zeros of (11) by setting the
complex speed deviation of the disturbed generator to wo+j0
rads/sec (or 1.0+0 per unit). The extemal torque ATy, is determined
in the solution process. As iterations converge, the magnitude of the
external torque tends to zero and provides an indication of the
accuracy of the eigenvalue.




The zeros of AT,,(s) may be determined by using the Newton's
method. This requires the derivative of ATy, with respect to s. From
equation (10)
9(ATm) i N aKD(S) 1 9Ks(s)
9s wo os s ds
Substituting for Kg/s? from (11), and with Kp, 0Kp/ds and 2Ks/9s
negligibly small, we have from (12)
O(AT,
—( m) = ﬂA@
ds g
The Newton-Raphson method for the iterative solution of s is given
by:

K:( )] o

13)

_ ATp(s) N AT (s) 4
+1 = Sp AT, ] =8p Yy - (14)
os S 0y

For modes which involve many machines this makes too large of a
change in the eigenvalue at each iteration. In such cases, dKg/ds and
9dKp/ds are not small. Therefore, an equivalent inertia is used so that
kinetic energy associated with the change in speed at all machines in
the system is equal to the equivalent inertia multiplied by the square
of the speed change of the disturbed machine. The equivalent inertia
is given by:

Na JA; 12
H, = Z j 3 15)
with N,, = no. of machines.
Equation (14) is then modified to
AT (sn)
Sne1 =S = 6)

where, as discussed earlier, Am has been set 10 oy, The complex
pair of eigenvalues are computed by solving the above equation
iteratively. The torque ATy, necessary to keep the speed change of a
chosen disturbed machine to g and the speed changes Aw; of all
other machines depend on the system equations (1), (2) for each
dynamic device and the network equations (5).

From (1), for any complex frequency s,

5Xq = AgXg + BaAv a7
Therefore,
Xg = (sF = Ag) ByAv (18)

Substituting into (2), we have the following expression for Aig in the
s domain,

Aig = Ca(sT — Ag) 1ByAV — Y AV = =Y g (s)AV 19)

where
Yo (8) = [Ya — Ca(sI - Ag) ' By] 0
={Yq - CqU(sI - A)1U-1By] @n

with

A =diagonal matrix of eigenvalues of the device

U  =corresponding eigenvector matrix
Computation of Yg,(s) defined by (21) at any complex frequency is
simplified by the fact that (sI ~ A) is diagonal.
For the disturbed machine, the dynamic equations, including the
effect of the applied torque AT,,, may be written in the partitioned
form as

. Wy
Aw| Jay an an|[Ae] {b1 2H
A8 =1 o o||as|+|0jave] 0 |AT. @2
X; an a8 Ayl X B, 0

Aw
Aig={c¢; & C, ] AS =~ YyAv
X
where x, is a vector repreésenting all state variables of the machine,
except for Aw and AS. For the disturbed machine, Aw is assumed to
be equal to my and hence A3 = wy/s.
From (22) and (23), we have the following expressions for ATy, and
Aiy in the s domain,

23

a; A,
AT, =2H{S‘au = - ay (s - A (o + —3)]

- %%[bl +ag6l— A B,] Av @4
Aig =ige(s) - Yae (5)AV (25)
where
a
ide(s) = [cl + cTz + CI(SI = An')_l (all + _;2")} o (26)
Yoo(8) =Yg + Co(sI - Ap) "B, @n

As in (21}, computauons assocmtcd with (24) and (25) are
simplified by expressing (sI - Ayl in the diagonal form in terms
of eigenvalues of A,
Combining the device equations (19), (25) and the network
equations (5), we have

ips(s) = (Yn + Yps(s)AV (28)
where Yp,(s) is a block diagonal matrix of the device equivalent
admittances Yg,(s) given by (21), and ipe(s) is the device current
source vector with a non-zero value only for the disturbed machine
given by (26).
The computation steps associated with the AESOPS algorithm are
as follows:
1. With the initial value of complex frequency s equal to the
specified estimate, compute Yy, (s), ig.(s) using (21), (26) and
@n.
Solve (28) to compute bus voltage Av.
Compute H, and ATy, using (15) and (24).
Compute next estimate of s using (16).
If As is within tolerance, stop; otherwise go to 1.

Computatxonal efficiency is achieved by using a very efficient
sparsity based network solution technique for the solution of (28).

“oA N

Implementation of the modified Arnoldi method

The modified Amnoldi method is based on a reduction technique in
which a general matrix A is reduced to an upper Hessenberg matrix
by the recurrence:

i

i, iVies = AV = Thyvy  i=1,--+,m 29
=

where

vy is an arbitrary starting vector with llvyll, =

hyi = v]'Av; (superscript H means conjugate-transpose)

his1,; is a scaling factor to make lviyyih =1

m  is the prespecified order of the reduced Hessenberg

matrix

Equation (29) can be rearranged and assembled for all m equations
to give

AVy, 30

=VaHy + by, m Vet e;‘;:

where




O
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Vm=[v ¥y ]
by e .
hpa by . hpn
m = . . .
0 hm.m-l hm.m

el=[0---01]

Note that Hy, is an upper Hessenberg matrix. It can be shown that
ideally the vector sequence v; generated by (29) is orthonormal.
Therefore, if m=N (the order of A), we have

hne N =0
and equation (30) becomes
AVy = VyHN 31

or A is exactly reduced to the upper Hessenberg matrix Hy whose
eigenvalues are then the eigenvalues of A. On the other hand, based
on an important feature of the method that the value of the
subdiagonal elements of Hy, by m, decrease very rapidly as m
increases, a good approximation can be made for m«N by
dropping out the second term in (30):

AVp =V H, T @

In this case, the cigenvalues of the low order matrix, Hp,,
approximate a subset of the eigenvalues of A. In practice, m is
usually not more than 30 even for a system having several thousand
states. The corresponding eigenvectors of A are given by

W=V,P 33)

where P is the eigenvector matrix of Hy,. In order to improve the
accuracy of the cigenvalues of A, the above procedure can be
iterated with a new starting vector vi®¥ derived from Vy,, for
example, the linear combination of the columns of Vp,:

m
v?ew = _Eaiv-i 34
=1

where the suitable coefficients o; can be calculated from the modal
information of Hy, [7).

As noted in [12], equation (32) holds only if the vector sequence v;
is kept orthogonal at each step of calculation. In practice, and in
common with the Lanczos method, the orthogonality is lost rapidly
due to the round-off errors. The remedy is to introduce a
reorthogonalization process after the calculation of each v; from
(29).

Another property of the method is that the eigenvalues of Hy, in
(32) converge to those eigenvalues of A which have largest (and
smallest) modulus. Thus if eigenvalues of A around a specified
point A, are desired, the following transformation

A =(A-\D! 35
can be used to magnify the eigenvalues of A close to A, since
1
A= o (36)

where A; is an eigenvalue of A, and Ay is the corresponding
eigenvalue of A;. Matrix A, is matrix to which the method can be
applied in order to find the set of eigenvalues of A close to Ay, which
is termed a shift point.

It should be pointed out that the only operation involving A is the
matrix-vector multiplication Av; in (29), or more practically the
solution of the equation

(A-AdDu; =v; @n

if the transformation (36) is used. This kind of calculation can
readily be accomplished for the power system small signal model
(3), (4) and (5). In fact, as can be verified from (7), equation (37)

can be rewritten in terms of (3), (4) and (5) as
Ap -l Bp u; v
Co —(Yn+Yp)||@|=|0 @8
where q; an auxiliary vector. The solution of (38) to compute w;
involves three steps:

1. calculate Yp.(A) = Yp — Cp(MI~ Ap)'Bp (39)
2. solve for q;: (Yy + Ype(A)gs = —Cp(hJ - Ap)ly; (40)
3. calculate u; = (I~ Ap)  (Bpg; - vi) @1

It can be readily seen that the calculation of Ype(A¢) in the first step
is the same .as that of Yp(s) of AESOPS algorithm in (28). The
network solution in the second step is same as in (28), except that
the current injection vector is different. In addition, the calculations
involving (\I — Ap)™! in the second and third steps are fast since
the modal decoupling of Ap, is already available from the first step
as illustrated in (21). Therefore, the method can share with AESOPS
much of the computer codes.

Once u; is obtained, v;,; and thus the related elements in Hy, are
formed with a prespecified order m. The QR transformation method
is then employed to compute the eigenvalues and eigenvectors of
Hp,. If the changes in eigenvalues are outside 2 specified tolerance,
a new starting vector vi®¥ is formed using (34) for the next
iteration.

It should be pointed out that the factorization of the network
equivalent admittance matrix Yn+Ype(A;) in (40) is performed only
once for the whole calculation since A; is not changed during
iterations. This makes the method generally faster than the AESOPS
algorithm in which the factorization is performed in each iteration
as s is updated.

Calculation of Eigenvectors in PEALS

In AESOPS, the speed deviations Aw; obtained in the last iteration
directly give the speed components of the right eigenvector, and in
MAM the complete right eigenvector is calculated by (33).

The left eigenvector is calculated in PEALS/AESOPS using the
transposed system dynamic model of (3) and (4)

y=A%y+Clau 42)

Aj=BLy-¥YlAu (43)
and the transposed network model of (5)

Aj=YFAu 49

It can be readily shown that the AESOPS algorithm when applied to
the above model will converge to a system eigenvalue and the
corresponding left eigenvector. With the initial eigenvalue estimate
equal to the correct value, one iteration is usually sufficient for the
algorithm to converge to the left eigenvector.

The left eigenvector is calculated in PEALS/MAM by inverse
iteration. It requires the solution of the transposed system of (38)

Ab-a1 b [ y} [Yo}

B —~Yn+Yp)T||a]| T|0 “3)

with the computed eigenvalue A, and an arbitrary vector yo.
Normally, one iteration is sufficient to give the left eigenvector.

RESPONSE CALCULATION IN MASS AND PEALS

In MASS both time and frequency response facilities are available
which rely on modal decomposition. Provided that all eigenvectors
are distinct, the state equations




O

X =Ax+Bu (46)

y=Cx+Du 4n
may be diagonalized by the ransformation

x =Uz (48)
to give

z=Az+U"'Bu (49)

y=CUz+Du (50)

where A is the diagonal matrix of eigenvalues and U is the
corresponding eigenvector matrix. Equation (49) and (50) may be
easily solved for output y, for any given input u. Three types of
response are calculated on request: impulse and step time response,
and frequency response.

" In PEALS, full modal analysis is not preformed and hence it is not

available for time response calculations. Frequency response is,
however, straightforward to calculate directly from the system
equations in the form used by PEALS/AESOPS, with s replaced by
jw [5]. Because the network equations are retained explicitly in
PEALS, it is as easy to apply disturbances to the network as it is to
the dynamic devices. Similarly it is easy to monitor network
quantities such as bus voltage and line power flow. This frequency
response option is useful in the design of controls for HVDC links
and SVCs.

STRUCTURE OF MASS/PEALS PACKAGE

Figure 1 shows the overall structure of the MASS/PEALS integrated
package for eigenvalue calculations. It takes advantage of the
common features between MASS and PEALS, and between
PEALS/AESOPS and PEALS/MAM.

MASS has provision for representing up to 20 areas, with each area
having a maximum of 250 dynamic devices and 500 system states.
With the single area representation, it is limited to systems which
may be represented by less than 500 dynamic states. PEALS is
capable of simulating a system with up to 2,200 dynamic devices,
with the maximum number of system states equal to 22,000. The
network representation is common to both programs and is limited
to 12,000 buses and 30,000 lines. The MASS/PEALS package
requires a virtual memory of about 15.5 MB (VAX-VMS).

The overall package has a modular structure with flexibility to
readily add new models and implement alternative solution
techniques. Work currently underway for the enhancement of the
package includes the implementation of multiterminal HVDC link
model and facilities for computing system zeros and transfer
functions. In addition, Selective Modal Analysis algorithm for
computation of eigenvalues associated with interarea modes is being
added in cooperation with the Instituto De Investigacion
Tecnologica, Madrid, Spain.

In order to meet the broad requirements of power system stability
analysis, the SSSP package has been made compatible with the new
Extended Transient/Midterm Stability Program (ETMSP) being
developed under the EPRI project RP1208-9.

APPLICATIONS OF MASS AND PEALS

MASS computes information about all system modes and, therefore,
is ideally suited for analysing problems associated with local plant
modes, control modes, torsional modes, and interarea modes of
small or medium size systems. It is also useful for control design
and identifying problems due to poor coordination of controls of
different devices.

PEALS, on the other hand, computes information related to a
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Figure 1 Structure of MASS/PEALS Package

selected subset of system modes. However, it can simulate very
large systems and is therefore ideally suited for the analysis of
interarea as well as local plant’ modes of large interconnected
systems. Since full network solution is carried out as part of the
eigenvalue calculation, PEALS also provides valuable information
about the bus voltages. The frequency response option enables
systematic contro! design techniques to be applied to enhance
stability of inter-area modes.

The programs complement each other for the solution of a wide
range of system dynamic problems. They have been used at Ontario
Hydro extensively for the following applications:

-~ Investigation of small signal stability problems;

—  Design of power system stabilizers [13, 14];

—  Selection of AVR and governor settings [2, 15];

—  Analysis of interaction between torsional modes and excitation
controls [2, 13], or speed governing system [16];

Reference [14] provides a detailed account of the application of
MASS and PEALS for the design of power system stabilizers for a
major nuclear station and illustrates the use of participation factors
and frequency response characteristics for control design. Reference

. [13] shows comparisons of computed and measured - on-line

frequency and time responses for some of the stabilizer applications.

Currently, the SSSP package is being used by Ontario Hydro for a
research project, funded by the Canadian Electrical Association, on
low frequency interarea oscillations in large power systems.

RESULTS OF TEST CASES

Three systems are considered for verifying and comparing the three
eigenvalue algorithms in SSSP package. The composition and size
of these systems are summarized in Table 1. All three systems are
representations of the eastern US/Canada interconnected system,
with different degrees of detail and system reduction. It should be
noted that because of size limitations MASS can analyse only the
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first system, whereas PEALS using either AESOPS or MAM is able
to analyse all three systems.

Table 1 - Description of Test Systems

System 1 System 2 System 3

No. of Buses 1,368 3,732 10,546
No. of Generators

- Detailed Model 18 725 1,036
~ Classical Model 76 130 61
No. of DC Links [ 7 15
No. of SVCs .0 5 10
Total No. of States 366 7,195 13475

The objective is to compare the results of eigenvalue calculations
using the three methods as this is the difficult part in the analysis of
complex systems. Results of other calculations such as eigenvectors
and participation factors are not presented since they are fairly
straightforward once the eigenvalues are computed. However, an
example of frequency response calculation, using PEALS, is given
for System 1.

System 1

This system was analyzed first using MASS to obtain all
cigenvalues and participation factors from which three interarea
modes arc identified. Comparison was then made by calculating
these interarca modes with both PEALS/AESOPS and
PEALS/MAM. The results are summarized in Table 2.

Table 2 - Comparison of Results for System 1

System 3

One of the features of PEALS/MAM is the capability for scanning
eigenvalues over a frequency range on the complex plane. This was
used to search the frequency range of 0.1 Hz to 0.8 Hz with 15 shift
points evenly placed within the range. For each shift point, 2
cigenvalues were calculated. Some of the eigenvalues computed
were common to different shift points and in all 20 distinct pairs of
cigenvalues were computed. From the participation factors nine of
these were identified as being associated with interarea modes and
these are summarized in Table 4,

Table 4 — Interarea Modes of System 3

Mode Eigenvalue Frequency Damping Ratio
1 0.050%j1.542 0.245 0.032
2 005742237 0356 0.025
3 -0.2654j3.343 0532 0.079
4 0.047£j3.352 0.534 0.014
5 -02611j3.846 0.612 0,068
6 -0.150::j3.938 0.627 0.038
7 0.0074.206 0.669 -0.002
8 007244972 ©0mM 0015
9 -0,083:5.009 0.797 0.017

PEALS/AESOPS was also used to compute the first two modes in
the above table. Table 5 gives the results of PEALS/AESOPS.

Table 5 ~ Results of PEALS/AESOPS for System 3
mode Initial Estimate Converged Value
1
2

0.0+4j1.5 -0.051+j1.543
0.0+2.3 -0.061+{2.240

Mode MASS PEALS/AESOPS PEALS/MAM
1 0.1224j1.650 -0.121%j1.650 -0.1211j1.650
2 0.1174j3.073 0.1173§3.073 -0.1174j3.073
3 0.2761§5.212 -0.2761j5.212 -0.276+i5.212

A frequency response calculation was further' carried out, using
PEALS, for the change in speed of a large nuclear unit in this
system to a change in mechanical torque, as shown in Figure 2, It
can be seen from the figure that resonant frequencies at about 0.26
Hz, 0.49 Hz and 0.82 Hz are present in the selected machine, which
correspond to three interarea modes in Table 2.

0.8

0.6

Speed Changes
0.4

In the above PEALS/AESOPS calculations, an etror tolerance of
5x10™3 was used. We have found that this error tolerance is a
practical compromise between computational speed and accuracy
for very large systems. For the other cases and for the results of
Table 4 an error tolerance of 10~* was used. The PEALS/AESOPS
results shown above can be scen to differ from the more accurate
PEALS/MAM results by less than the tolerance.

CPU Time Comparison

The CPU times for the above eigenvalue calculations with PEALS
are given in Table 6. The CPU times listed are in minutes on
VAXB8650-VMS. For cach system, the computation conditions were
made the same, i.c. both methods start from the same initial
cigenvalue estimations (all within 10% of the true eigenvalues) with
the same ervor tolerance (10~* for system 1 and 2, and 5x1073 for
system 3). As a reference, the MASS run for system 1 requires 11
minutes to compute all eigenvalues and the associated participation
factors.

~
o
=] N : :
0.2 0.4 0.6 0.8 1.0
Frequency in Hertz
Figure 2 Frequency Response of System 1
System 2

PEALS/AESOPS and PEALS/MAM were employed to calculate
two of the low frequency oscillatory modes. The results are
summarized in Table 3.

Table 3 — Comparison of Results for System 2

Mode PEALS/AESOPS PEALS,
1 20.057133.886 -0.056j3.836
2 0.16314.317 -0.164+j4.318

‘Table 6 - CPU Time Comparison
System | No.of Modes Found | PEALS/AESOPS PEALS/MAM
1 3 61 28
2 2 50 k]
3 2 184 154
General Comments

From Table 2 to 5, it is clear that all three methods give practically
identical results for the different systems considered. This is
particularly reassuring in view of the very complex systems
analyzed and the widely differing theorics on which the cigenvalue
calculations are based.

From the CPU time comparison, AESOPS/MAM is seen to be faster
than PEALS/AESOPS. The convergence of the AESOPS algorithm
is very sensitive to the chosen initial estimate and error tolerance.
The computation time shown in Table 6 for PEALS/AESOPS
assumes good initial estimates and may be much larger if this is not
the case. The modified Arnoldi method, on the other hand, has been
observed to converge with very small error tolerance, within two




iterations provided less than five eigenvalues are computed per shift
point.

The two alternative eigenvalue techniques employed in PEALS
program have different convergence properties. The AESOPS
algorithm converges only to those rotor angle modes associated with
the disturbed generator and inherently selects a system location
which includes that machine. This selection process can be useful
when it is required to track the changes in a specific mode with
changes in system conditions or control parameters. The modified
Arnoldi method, however, converges to those system eigenvalues
closest to a chosen shift point so that it is able to compute all
eigenvalues within a specific frequency range.

SUMMARY

Small signal analysis using modal analysis techniques provides
valuable information about the inherent dynamic characteristics
which influence system stability. Such information is required in the
economic design and control of the present day complex
interconnected power systems. This paper has described a small
signal stability program package based on eigenvalue techniques
suitable for analysing a wide range of power system stability and
control problems which addresses this requirement. The package has
facilities for representing all standard models normally used in
power system stability studies. In addition, provision is made for
representing the controls associated with generating units, HVDC
converters and SVCs by user-defined models. This offers practically
unlimited freedom in modelling these devices, making SSSP
particularly suited for developing new controls for enhancement of
power system stability.

The SSSP package has a modular structure providing the flexibility
to readily implement alternative solution techniques. At present, the
package has facilities for computing eigenvalues using the QR
transformation, the AESOPS algorithm and the modified Amoldi
method. Work is currendy underway to implement the Selective
Modal Analysis technique. These techniques may be used in a
complementary manner so as to satisfy differing requirements of
small signal stability analysis.

In addition to ecigenvalues, the SSSP package computes
cigenvectors, participation factor, frequency response, linear time
response, and network bus voltage vectors. These provide valuable
information required for identifying the sources of stability
problems and developing corrective controls,

The overall package includes a System Reduction Program and a
Dynamic Data Bank Program. Further, the SSSP package has been
made compatible with the Extended Transient/Midierm Stability
Progitam, thus forming a comprehensive stability analysis package.
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